Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37807413

RESUMO

miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranlated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.

2.
Neural Regen Res ; 17(7): 1535-1544, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34916439

RESUMO

The anterolateral motor cortex of rodents is an important motor auxiliary area, and its function is similar to that of the premotor area in humans. Activation and inhibition of the contralesional anterolateral motor cortex (cALM) have been shown to have direct effects on motor behavior. However, the significance of cALM activation and inhibition in the treatment of stroke remains unclear. This study investigated the role of optogenetic cALM stimulation in a mouse model of cerebral stroke. The results showed that 21-day optogenetic cALM inhibition, but not activation, improved neurological function. In addition, optogenetic cALM stimulation substantially altered dendritic structural reorganization and dendritic spine plasticity, as optogenetic cALM inhibition resulted in increased dendritic length, number of dendritic spines, and number of perforated synapses, whereas optogenetic activation led to an increase in the number of multiple synapse boutons and the number of dendritic intersections. Furthermore, RNA-seq analysis showed that multiple biological processes regulated by the cALM were upregulated immediately after optogenetic cALM inhibition, and that several immediate-early genes (including cFOS, Erg1, and Sema3f) were expressed at higher levels after optogenetic inhibition than after optogenetic activation. These results were confirmed by quantitative reverse transcription-polymerase chain reaction. Finally, immunofluorescence analysis showed that the c-FOS signal in layer V of the primary motor cortex in the ischemic hemisphere was higher after optogenetic cALM activation than it was after optogenetic cALM inhibition. Taken together, these findings suggest that optogenetic cALM stimulation promotes neural reorganization in the primary motor cortex of the ischemic hemisphere, and that optogenetic cALM inhibition and activation have different effects on neural plasticity. The study was approved by the Experimental Animal Ethics Committee of Fudan University (approval No. 201802173S) on March 3, 2018.

3.
Environ Pollut ; 159(8-9): 1996-2002, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21396758

RESUMO

The objective of this study was to characterize and understand the water quality of Boston's Muddy River prior to restoration, to help guide those activities and evaluate their success. We use a combination of monitoring, data analysis and mathematical modeling. The seasonal pattern of temperature, pollutant signatures (identified using a principal component analysis), correlations with precipitation and spatial patterns all point to a significant wastewater input at one of the outfalls and suggest significant receiving water impact. However, a quantitative analysis using a mathematical model (QUAL2K) suggests this source is not significant. Rather, internal loading from algae, sediment bed and waterfowl dominate the spatial pattern of water quality. These results suggest significant improvement can be expected from planned sediment dredging. The paper provides a case study of water quality assessment in the context of urban river restoration, and it illustrates the utility of combining monitoring and data analysis with modeling.


Assuntos
Rios/química , Poluentes Químicos da Água/análise , Análise da Demanda Biológica de Oxigênio , Boston , Monitoramento Ambiental , Microalgas/classificação , Microalgas/crescimento & desenvolvimento , Modelos Químicos , Modelos Teóricos , Oxigênio/análise , Fósforo/análise , Rios/microbiologia , Estações do Ano , Movimentos da Água , Poluição Química da Água/estatística & dados numéricos , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA