RESUMO
Understanding the role of mechanical force on tissue nutrient transport is essential, as sustained force may affect nutrient levels within the disc and initiate disc degeneration. This study aims to evaluate the time-dependent effects of different compressive force amplitudes as well as tensile force on glucose concentration and cell viability within the disc. Based on the mechano-electrochemical mixture theory, a multiphasic finite element model of the lumbar intervertebral disc was developed. The minimum glucose concentration and minimum cell density in both normal and degenerated discs were predicted for different compressive force amplitudes, tensile force, and corresponding creep time. Under high compressive force, the minimum glucose concentration exhibited an increasing and then decreasing trend with creep time in the normal disc, whereas that of the degenerated disc increased, then decreased, and finally increased again. At steady state, a higher compressive force was accompanied by a lower glucose concentration distribution. In the degenerated disc, the minimum cell density was negatively correlated with creep time, with a greater range of affected tissue under a higher compressive force. For tensile force, the minimum glucose concentration of the degenerated disc raised over time. This study highlighted the importance of creep time, force magnitude, and force type in affecting nutrient concentration and cell viability. Sustained weight-bearing activities could deteriorate the nutrient environment of the degenerated disc, while tensile force might have a nonnegligible role in effectively improving nutrient levels within the degenerated disc.
Assuntos
Sobrevivência Celular , Força Compressiva , Análise de Elementos Finitos , Glucose , Disco Intervertebral , Resistência à Tração , Glucose/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/citologia , Modelos Biológicos , Fenômenos Biomecânicos , Estresse MecânicoRESUMO
Recent studies have emphasized the importance of dynamic activity in the development of myelopathy. However, current knowledge of how degenerative factors affect the spinal cord during motion is still limited. This study aimed to investigate the effect of various types of preexisting herniated cervical disc and the ligamentum flavum ossification on the spinal cord during cervical flexion and extension. A detailed dynamic fluid-structure interaction finite element model of the cervical spine with the spinal cord was developed and validated. The changes of von Mises stress and maximum principal strain within the spinal cord in the period of normal, hyperflexion, and hyperextension were investigated, considering various types and grades of disc herniation and ossification of the ligamentum flavum. The flexion and extension of the cervical spine with spinal canal encroachment induced high stress and strain inside the spinal cord, and this effect was also amplified by increased canal encroachments and cervical hypermobility. The spinal cord might evade lateral encroachment, leading to a reduction in the maximum stress and principal strain within the spinal cord in local-type herniation. Although the impact was limited in the case of diffuse type, the maximum stress tended to appear in the white matter near the encroachment site while compression from both ventral and dorsal was essential to make maximum stress appear in the grey matter. The existence of canal encroachment can reduce the safe range for spinal cord activities, and hypermobility activities may induce spinal cord injury. Besides, the ligamentum flavum plays an important role in the development of central canal syndrome.Significance. This model will enable researchers to have a better understanding of the influence of cervical degenerative diseases on the spinal cord during extension and flexion.
Assuntos
Pescoço , Medula Espinal , Análise de Elementos Finitos , Vértebras Cervicais , OsteogêneseRESUMO
Ossification of the ligamentum flavum (OLF) is thought to be an influential etiology of myelopathy, as thickened ligamentum flavum causes the stenosis of the vertebral canal, which could subsequently compress the spinal cord. Unfortunately, there was little information available on the effects of cervical OLF on spinal cord compression, such as the relationship between the progression of cervical OLF and nervous system symptoms during dynamic cervical spine activities. In this research, a finite element model of C1-C7 including the spinal cord featured by dynamic fluid-structure interaction was reconstructed and utilized to analyze how different types of cervical OLF affect principal strain and stress distribution in spinal cord during spinal activities towards six directions. For patients with cervical OLF, cervical extension induces higher stress within the spinal cord among all directions. From the perspective of biomechanics, extension leads to stress concentration in the lateral corticospinal tracts or the posterior of gray matter. Low energy damage to the spinal cord would be caused by the high and fluctuating stresses during cervical movements to the affected side for patients with unilateral OLF at lower grades.
Assuntos
Ligamento Amarelo , Ossificação Heterotópica , Compressão da Medula Espinal , Doenças da Medula Espinal , Humanos , Osteogênese , Doenças da Medula Espinal/complicações , Compressão da Medula Espinal/etiologia , Ossificação Heterotópica/complicações , Vértebras TorácicasRESUMO
Primula filchnerae, an endangered plant endemic to China, has drawn people's attention in recent years due to its ornamental value in flower. It was rarely recorded since being described in 1902, but it was rediscovered in 2009 and is now known from a limited number of sites located in Hubei and Shaanxi Provinces. Since the species is still poorly known, a number of unanswered questions arise related to it: How has P. filchnerae responded to past climate change and how might it respond in the future? Why was P. filchmerae so rarely collected during the past century? We assembled geographic coordinates for P. filchnerae through the field surveys and website searches, and then used a maximum entropy model (MaxEnt) to simulate its potential suitable distribution in six periods with varied carbon emission levels by combining bioclimatic and environmental factors. MaxEnt showed that Min Temperature of the Coldest Month (bio6) and Precipitation of the Coldest Quarter (bio19) affected P. filchnerae's distribution most, with an aggregate contribution >60% and suitable ranges above -5 °C and below 40 mm, respectively. We also analyzed potential habitat distribution in various periods with differing impacts of climate change compared to today's suitable habitats, and in most cases, Shaanxi and Sichuan remained the most stable areas and with possible expansion to the north under various carbon emission scenarios, but the 2050s SSP5-8.5 scenario may be an exception. Moreover, we used MaxEnt to evaluate population shifts, with various scenarios indicating that geometric center would be concentrated in Sichuan Province in China. Finally, conservation strategies are suggested, including the creation of protected areas, long-term monitoring, raising public awareness of plant conservation, situ conservation measures, assisted migration, and species introduction. This study demonstrates how P. filchnerae may have adapted to changes in different periods and provides a scientific basis for germplasm conservation and management.
RESUMO
Ossification of the posterior longitudinal ligament (OPLL) has been identified as an important cause of cervical myelopathy. However, the biomechanical mechanism between the OPLL type and the clinical characteristics of myelopathy remains unclear. The aim of this study was to evaluate the effect of different types of OPLL on the dynamic biomechanical response of the spinal cord. A three-dimensional finite element model of the fluid-structure interaction of the cervical spine with spinal cord was established and validated. The spinal cord stress and strain, cervical range of motion (ROM) in different types of OPLL models were predicted during dynamic flexion and extension activity. Different types of OPLL models showed varying degrees of increase in stress and strain under the process of flexion and extension, and there was a surge toward the end of extension. Larger spinal cord stress was observed in segmental OPLL. For continuous and mixed types of OPLL, the adjacent segments of OPLL showed a dramatic increase in ROM, while the ROM of affected segments was limited. As a dynamic factor, flexion and extension of the cervical spine play an amplifying role in OPLL-related myelopathy, while appropriate spine motion is safe and permitted. Segmental OPLL patients are more concerned about the spinal cord injury induced by large stress, and patients with continuous OPLL should be noted to progressive injuries of adjacent level.
Assuntos
Ossificação do Ligamento Longitudinal Posterior , Doenças da Medula Espinal , Humanos , Ligamentos Longitudinais/fisiologia , Análise de Elementos Finitos , Osteogênese , Doenças da Medula Espinal/etiologia , Ossificação do Ligamento Longitudinal Posterior/complicações , Vértebras CervicaisRESUMO
OBJECTIVE: The aim of this review was to evaluate the overall diagnostic performance of e-devices for detection of health problems in older adults at home. METHODS: A systematic review was conducted following the PRISMA-DTA guidelines. RESULTS: 31 studies were included with 24 studies included in meta-analysis. The included studies were divided into four categories according to the signals detected: physical activity (PA), vital signs (VS), electrocardiography (ECG) and other. The meta-analysis showed the pooled estimates of sensitivity and specificity were 0.94 and 0.98 respectively in the 'VS' group. The pooled sensitivity and specificity were 0.97 and 0.98 respectively in the 'ECG' group. CONCLUSIONS: All kinds of e-devices perform well in diagnosing the common health problems. While ECG-based health problems detection system is more reliable than VS-based ones. For sole signal detection system has limitation in diagnosing specific health problems, more researches should focus on developing new systems combined of multiple signals.
Assuntos
Exercício Físico , Humanos , Idoso , Sensibilidade e EspecificidadeRESUMO
This study aims to establish and validate a poroelastic L4-L5 finite element model to evaluate the effect of different sitting postures and their durations on the mechanical responses of the disc. During the sustained loading conditions, the height loss, fluid loss and von-Mises stress gradually increased, but the intradiscal pressure decreased. The varying rates of aforementioned parameters were more significant at the initial loading stage and less so at the end. The predicted values in the flexed sitting posture were significantly greater than other postures. The extended sitting posture caused an obvious von-Mises stress concentration in the posterior region of the inter-lamellar matrix. From the biomechanical perspective, prolonged sitting may pose a high risk of lumbar disc degeneration, and therefore adjusting the posture properly in the early stage of sitting time may be useful to mitigate that. Additionally, upright sitting is a safer posture, while flexed sitting posture is more harmful.
Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Análise de Elementos Finitos , Vértebras Lombares/fisiologia , Postura Sentada , Fenômenos Biomecânicos/fisiologia , Disco Intervertebral/fisiologia , Postura/fisiologiaRESUMO
Spinal cord injury (SCI), a debilitating medical condition that can cause irreversible loss of neurons and permanent paralysis, currently has no cure. However, regenerative medicine may offer a promising treatment. Given that numerous regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding and characterising the mechanical properties of the spinal cord tissue is very important. In this study, we have systematically characterised the spatiotemporal changes in elastic stiffness (elastic modulus, Pa) and viscosity (drop in peak force, %) of injured rat thoracic spinal cord tissues at distinct time points after crush injury using the indentation technique. Our results demonstrate that in comparison with uninjured spinal cord tissue, the injured tissues exhibited lower stiffness (median 3281 Pa versus 9632 Pa; P < 0.001) but demonstrated elevated viscosity (median 80% versus 57%; P < 0.001) at 3 days postinjury. Between 4 and 6 weeks after SCI, the overall viscoelastic properties of injured tissues returned to baseline values. At 12 weeks after SCI, in comparison with uninjured tissue, the injured spinal cord tissues displayed a significant increase in both elasticity (median 13698 Pa versus 9920 Pa; P < 0.001) and viscosity (median 64% versus 58%; P < 0.001). This work constitutes the first quantitative mapping of spatiotemporal changes in spinal cord tissue elasticity and viscosity in injured rats, providing a mechanical basis of the tissue for future studies on the development of biomaterials for SCI repair. STATEMENT OF SIGNIFICANCE: Spinal cord injury (SCI) is a devastating disease often leading to permanent paralysis. While enormous progress in understanding the molecular pathomechanisms of SCI has been made, the mechanical properties of injured spinal cord tissue have received considerably less attention. This study provides systematic characterization of the biomechanical evolution of rat spinal cord tissue after SCI using a microindentation test method. We find spinal cord tissue behaves significantly softer but more viscous immediately postinjury. As time passes, the lesion site gradually returns to baseline values and then displays pronounced increased viscoelastic properties. As host tissue mechanical properties are a crucial consideration for any biomaterial implanted into central nervous system, our results may have important implications for further studies of SCI repair.
Assuntos
Traumatismos da Medula Espinal , Ratos , Animais , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Elasticidade , Fenômenos Mecânicos , Paralisia/patologiaRESUMO
Aim: To explore the effectiveness of home-based exercise programs with e-devices (HEPEs) on falls among community-dwelling older adults. Methods: Twelve randomized controlled trials were included in the meta-analysis considering four fall-related outcomes. Results: HEPEs significantly reduced the rate of falls (risk ratio: 0.82; 95% CI: 0.72-0.95; p = 0.006) and improved lower extremity strength (mean difference: -0.94; 95% CI: -1.71 to -0.47; p < 0.001). There was a significant improvement favoring HEPEs on balance if the participants were aged >75 years (mean difference: -0.55; 95% CI: -1.05 to -0.05; p = 0.03), or the intervention duration was at least 16 weeks (mean difference: -0.81; 95% CI: -1.58 to -0.05; p = 0.04). Conclusion: HEPEs demonstrated an overall positive effect on falls among community-dwelling older adults.
Assuntos
Vida Independente , Equilíbrio Postural , Idoso , Terapia por Exercício , HEPES , HumanosRESUMO
Morchella is a kind of precious edible, medicinal fungi with a series of important effects, including anti-tumor and anti-oxidation effects. Based on the data of 18 environmental variables and the distribution sites of wild Morchella species, this study used a maximum entropy (MaxEnt) model to predict the changes in the geographic distribution of Morchella species in different historical periods (the Last Glacial Maximum (LGM), Mid Holocene (MH), current, 2050s and 2070s). The results revealed that the area under the curve (AUC) values of the receiver operating characteristic curves of different periods were all relatively high (>0.83), indicating that the results of the maximum entropy model are good. Species distribution modeling showed that the major factors influencing the geographical distribution of Morchella species were the precipitation of the driest quarter (Bio17), elevation, the mean temperature of the coldest quarter (Bio11) and the annual mean temperature (Bio1). The simulation of geographic distribution suggested that the current suitable habitat of Morchella was mainly located in Yunnan, Sichuan, Gansu, Shaanxi, Xinjiang Uygur Autonomous Region (XUAR) and other provinces in China. Compared with current times, the suitable area in Northwest and Northeast China decreased in the LGM and MH periods. As for the future periods, the suitable habitats all increased under the different scenarios compared with those in contemporary times, showing a trend of expansion to Northeast and Northwest China. These results could provide a theoretical basis for the protection, rational exploitation and utilization of wild Morchella resources under scenarios of climate change.
RESUMO
Spinal cord injury (SCI) is a global problem that brings a heavy burden to both patients and society. Recent investigations indicated degenerative disease is taking an increasing part in SCI with the growth of the aging population. However, little insight has been gained about the effect of cervical degenerative disease on the spinal cord during dynamic activities. In this work, a dynamic fluid-structure interaction model was developed and validated to investigate the effect of anterior and posterior encroachment caused by degenerative disease on the spinal cord during normal extension and flexion. Maximum von-Mises stress and maximum principal strain were observed at the end of extension and flexion. The abnormal stress distribution caused by degenerative factors was concentrated in the descending tracts of the spinal cord. Our finding indicates that the excessive motion of the cervical spine could potentially exacerbate spinal cord injury and enlarge injury areas. Stress and strain remained low compared to extension during moderate flexion. This suggests that patients with cervical degenerative disease should avoid frequent or excessive flexion and extension which could result in motor function impairment, whereas moderate flexion is safe. Besides, encroachment caused by degenerative factors that are not significant in static imaging could also cause cord compression during normal activities.
Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Humanos , Idoso , Análise de Elementos Finitos , Medula Espinal , Vértebras CervicaisRESUMO
The transforming growth factor (TGF)-ß signaling pathway controls many cellular processes, including proliferation, differentiation, and apoptosis. Abnormalities in the TGF-ß signaling pathway and its components are closely related to the occurrence of many human diseases, including cancer. Mothers against decapentaplegic homolog 4 (Smad4), also known as deleted in pancreatic cancer locus 4, is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-ß/Smad and bone morphogenetic protein/Smad signaling pathways. It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions. Smad4 also interacts with cytokines, miRNAs, and other signaling pathways, jointly regulating cell behavior. However, the regulatory function of Smad4 in tumorigenesis, stem cells, and drug resistance is currently controversial. In addition, Smad4 represents an attractive therapeutic target for cancer. Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment. Here, we review the identification and characterization of Smad4, the canonical TGF-ß/Smad pathway, as well as the multiple roles of Smad4 in tumorigenesis, stem cells, and drug resistance. Furthermore, we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.
RESUMO
Background: The total flavones of Abelmoschus manihot (TFA), a compound that is extracted from Abelmoschus manihot, has been widely used in China to reduce podocyte injury in diabetic kidney disease (DKD). However, the mechanisms underlying the therapeutic action of this compound have yet to be elucidated. Podocyte pyroptosis is characterized by activation of the NLRP3 inflammasome and plays an important role in inflammation-mediated diabetic kidneys. Regulation of the PTEN/PI3K/Akt pathway is an effective strategy for improving podocyte damage in DKD. Previous research has also shown that N6-methyladenosine (m6A) modification is involved in DKD and that m6A-modified PTEN regulates the PI3K/Akt pathway. In this study, we investigated whether TFA alleviates podocyte pyroptosis and injury by targeting m6A modification-mediated NLRP3-inflammasome activation and PTEN/PI3K/Akt signaling. Methods: We used MPC-5 cells under high glucose (HG) conditions to investigate the key molecules that are involved in podocyte pyroptosis and injury, including activation of the NLRP3 inflammasome and the PTEN/PI3K/Akt pathway. We detected alterations in the levels of three methyltransferases that are involved in m6A modification. We also investigated changes in the levels of these key molecules in podocytes with the overexpression or knockdown of methyltransferase-like (METTL)3. Results: Analysis showed that TFA and MCC950 protected podocytes against HG-induced pyroptosis and injury by reducing the protein expression levels of gasdermin D, interleukin-1ß, and interleukin-18, and by increasing the protein expression levels of nephrin, ZO-1, WT1 and podocalyxin. TFA and 740Y-P inhibited activation of the NLRP3 inflammasome via the PI3K/Akt pathway by inhibiting the protein levels of NIMA-related kinase7, NLRP3, ASC, and caspase-1, and by increasing the protein expression levels of p-PI3K and p-Akt. TFA improved pyroptosis and injury in HG-stimulated podocytes by regulating METTL3-dependent m6A modification. Conclusion: Collectively, our data indicated that TFA could ameliorate pyroptosis and injury in podocytes under HG conditions by adjusting METTL3-dependent m6A modification and regulating NLRP3-inflammasome activation and PTEN/PI3K/Akt signaling. This study provides a better understanding of how TFA can protect podocytes in DKD.
RESUMO
Mitochondria are key cellular organelles and play vital roles in energy metabolism, apoptosis regulation and cellular homeostasis. Mitochondrial dynamics refers to the varying balance between mitochondrial fission and mitochondrial fusion that plays an important part in maintaining mitochondrial homeostasis and quality. Mitochondrial malfunction is involved in aging, metabolic disease, neurodegenerative disorders, and cancers. Mitophagy, a selective autophagy of mitochondria, can efficiently degrade, remove and recycle the malfunctioning or damaged mitochondria, and is crucial for quality control. In past decades, numerous studies have identified a series of factors that regulate mitophagy and are also involved in carcinogenesis, cancer cell migration and death. Therefore, it has become critically important to analyze signal pathways that regulate mitophagy to identify potential therapeutic targets. Here, we review recent progresses in mitochondrial dynamics, the mechanisms of mitophagy regulation, and the implications for understanding carcinogenesis, metastasis, treatment, and drug resistance.
RESUMO
Chalcone synthase gene (BaCHS) from Brunfelsia acuminata flowers was isolated using RT-PCR and RACE. The coding region of the gene is 1425-bp with an open reading frame of 1170-bp, 73-bp 5'UTR, and 172-bp 3'UTR. Its deduced protein does not have a signal peptide but does contain a cond_enzyme superfamily domain, and consists of 389 amino acids with a predicted molecular mass of 42,699 Da and a pI of 6.57. The deduced amino acid sequence of BaCHS shares 90%, 88%, 85%, 84% and 79% identity with CHS from Petunia hybrida, Nicotiana tabacum, Solanum lycopersicum, Capsicum annuum and Camellia sinensis, respectively. The striking color change from dark purple to light purple and ultimately lead to pure white resulted from a decline in anthocyanin content of the petals and was preceded by a decrease in the expression of BaCHS. Its gene expression was positively correlated with the contents of anthocyanin (p ≤ 0.01).