Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Osteoporos Int ; 35(2): 243-253, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37857915

RESUMO

Iron is a necessary trace element in the human body, and it participates in many physiological processes. Disorders of iron metabolism can cause lesions in many tissues and organs, including bone. Recently, iron has gained attention as an independent factor influencing bone metabolism disorders, especially the involvement of iron overload in osteoporosis. The aim of this review was to summarize the findings from clinical and animal model research regarding the involvement of iron in bone metabolism disorders and to elucidate the mechanisms behind iron overload and osteoporosis. Lastly, we aimed to describe the association between bone loss and iron overload. We believe that a reduction in iron accumulation can be used as an alternative treatment to assist in the treatment of osteoporosis, to improve bone mass, and to improve the quality of life of patients.


Assuntos
Sobrecarga de Ferro , Osteoporose , Animais , Humanos , Ferro/metabolismo , Qualidade de Vida , Sobrecarga de Ferro/complicações , Osso e Ossos/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/metabolismo
2.
Free Radic Biol Med ; 198: 123-136, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738798

RESUMO

Excess iron accumulation is a risk factor for osteopenia and osteoporosis, and ferroptosis is becoming well understood as iron-dependent form of cell death resulting from lipid peroxide accumulation. However, any pathological impacts of ferroptosis on osteoporosis remain unknown. Here, we show that ferroptosis is involved in excess-iron-induced bone loss and demonstrate that osteoporotic mice and humans have elevated skeletal accumulation of the NADPH oxidase 4 (NOX4) enzyme. Mechanistically, we found that the NOX4 locus contains iron-response element-like (IRE-like) sequences that are normally bound (and repressed) by the iron regulatory protein 1 (IRP1) protein. Binding with iron induces dissociation of IRP1 from the IRE-like sequences and thereby activates NOX4 transcription. Elevated NOX4 increases lipid peroxide accumulation and causes obvious dysregulation of mitochondrial morphology and function in osteoblasts. Excitingly, the osteoporotic bone loss which we initially observed in an excessive-iron accumulating mouse line (Hepc1-/-) was blocked upon treatment with the ferroptosis-inhibitor ferrostatin-1 (Ferr-1) and with the iron chelator deferoxamine (DFO), suggesting a potential therapeutic strategy for preventing osteoporotic bone loss based on disruption of ferroptosis.


Assuntos
Ferroptose , Sobrecarga de Ferro , Osteoporose , Humanos , Camundongos , Animais , NADPH Oxidase 4/metabolismo , Peróxidos Lipídicos , Ferro/metabolismo , Osteoblastos/metabolismo
3.
Free Radic Biol Med ; 193(Pt 2): 595-609, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36372285

RESUMO

NADPH oxidase 4 (Nox4) is the main source of reactive oxygen species, which promote osteoclast formation and lead to bone loss, thereby causing osteoporosis. However, the role of Nox4 in osteoblasts during early development remains unclear. We used zebrafish to study the effect of Nox4 deletion on bone mineralization in early development. nox4-/- zebrafish showed decreased bone mineralization during early development and significantly reduced numbers of osteoblasts, osteoclasts, and chondrocytes. Transcriptome sequencing showed that the TGF-ß signaling pathway was significantly disrupted in nox4-/- zebrafish. Inhibiting TGF-ß signaling rescued the abnormal bone development caused by nox4 deletion and increased the number of osteoblasts. We used Saos-2 human osteosarcoma cells to confirm our results, which clarified the role of Nox4 in human osteoblasts. Our results demonstrate the mechanism of reduced bone mineralization in early development and provide a basis for the clinical treatment of osteoporosis.


Assuntos
Osteoporose , Fator de Crescimento Transformador beta , Animais , Humanos , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Osteoblastos/metabolismo , Osteoporose/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Front Endocrinol (Lausanne) ; 13: 961903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313751

RESUMO

Iron accumulation is an independent risk factor for postmenopausal osteoporosis, but mechanistic studies of this phenomenon are still focusing on molecular and genetic researches in model animal. Osteoporosis with iron accumulation is a distinct endocrine disease with complicated pathogenesis regulated by several proteins. However, the comprehensive proteome-wide analysis of human bone is lacking. Using multiplex quantitative tandem mass tag-based proteomics, we detected 2900 and quantified 1150 proteins from bone of 10 postmenopausal patients undergoing hip replacement. Comparing with non-osteoporosis patients, a total of 75 differentially expressed proteins were identified, comprising 53 downregulated proteins and 22 upregulated proteins. These proteins primarily affect oxidoreductase activity, GTPase activity, GTP binding, and neural nucleus development, were mainly enriched in neural, angiogenesis and energy-related pathways, and formed complex regulatory networks with strong interconnections. We ultimately identified 4 core proteins (GSTP1, LAMP2, COPB1, RAB5B) that were significantly differentially expressed in the bone of osteoporosis patients with iron accumulation, and validated the changed protein level in the serum of the medical examination population. Our systemic analysis uncovers molecular insights for revealing underlying mechanism and clinical therapeutics in osteoporosis with iron accumulation.


Assuntos
Osteoporose , Proteômica , Feminino , Animais , Humanos , Densidade Óssea , Osteoporose/metabolismo , Proteoma/metabolismo , Ferro
5.
J Healthc Eng ; 2022: 5298892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399830

RESUMO

Background: The purpose of this study was to demonstrate the pharmacodynamic material basis and molecular mechanism of pilose antler (PA) in the prevention and treatment of osteoporosis (OP) by the method of network pharmacology. Methods: First, the active components of PA were screened by BATMAN-TCM database, and the component targets were obtained from the SwissTargetPrediction online tool. Moreover, the relevant target genes of OP were obtained by searching the DisGeNET database. Second, the Venn diagram was drawn to obtain the PA-OP common targets, and the protein-protein interaction (PPI) network and drug-component-target (D-C-T) network were constructed by Cytoscape software. Finally, the GO functional annotation and KEGG pathway enrichment analysis of common targets were performed using the Metascape online tool. Results: 82 common targets were identified by generating a Venn diagram. The PPI network of 82 common targets indicated that the top 5 nodal targets, including PIK3CA, MAPK1, ESR1, AKT1, and SRC, were strongly associated with other proteins. The D-C-T network suggested that the active components with high degree of connectivity include Prostaglandin E1, 17-Beta-Estradiol, Alpha-Estradiol, and Estrone. Furthermore, the GO enrichment analysis revealed that the biological process categories were dominated by response to peptide, cellular response to lipid, regulation of MAPK cascade, and so on. Additionally, the KEGG pathway analysis indicated the estrogen signaling pathway, osteoclast differentiation, and HIF-1 signaling pathway might have critical effects on the development of OP. Conclusion: The study shows that PA has the characteristics of multi-component, multi-target, and multi-pathway in treating osteoporosis.


Assuntos
Medicamentos de Ervas Chinesas , Osteoporose , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Estradiol/uso terapêutico , Humanos , Medicina Tradicional Chinesa/métodos , Farmacologia em Rede , Osteoporose/tratamento farmacológico
6.
Orthop Surg ; 12(4): 1304-1312, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32729185

RESUMO

OBJECTIVE: Iron plays a significant role in multiple biological processes. The purpose of this study was to measure whether iron mediated osteoclast differentiation through regulation of triggering receptor expressed in myeloid cells-2 (Trem-2) expression and the PI3K/Akt signaling pathway. METHODS: The effects of six different concentrations of ferric ammonium citrate (FAC) (100, 80, 40, 20, 10 and 0 µmol/L) on RAW 264.7 cells proliferation were assessed by Cell Counting Kit-8 (CCK-8) gassay. Tartrate resistant acid phosphatase (TRAP) assay was performed to detect the effects of FAC on osteoclast formation. The expression of osteoclast differentiation-related (TRAP, NFATc-1, and c-Fos) and Trem-2 mRNA and proteins was analyzed by reverse transcription-polymerase chain reaction and western blot, respectively. Si-Trem-2 was constructed and transfected to RAW264.7 to measure the effects of Trem-2 on FAC-mediated osteoclast formation. TRAP assay and osteoclast differentiation-related gene analyses were further performed to identify the role of Trem-2 in osteoclastogenesis. The Search Tool for the Retrieval of Interacting Genes (STRING) was used to explore the target genes of Trem-2. Trem-2-related gene ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were used for further in-depth analysis. PI3K/Akt pathway-related proteins were detected by immunofluorescence and western blot. RESULTS: In groups with FAC concentration of 10 (102.5 ± 3.1), 20 (100.5 ± 1.5), and 40 µmol/L (98.7 ± 3.1), compared with the control group (100.1 ± 2.2), cell viability was not significantly different from the control (P > 0.05). When the concentration of FAC exceeded 80 µmol/L, cell viability was significantly decreased (87.5 ± 2.8 vs 100.1 ± 2.2, P < 0.05). FAC promotes Trem-2 expression and osteoclast differentiation in a dose-response manner (P < 0.05). The number of osteoclast-like cells was found to be reduced following transfection with the siRNA of Trem-2 (42 ± 3 vs 30 ± 5, P < 0.05). We observed that most of Trem-2 target genes are primarily involved in response to organic substance, regulation of reactive oxygen species metabolic process, and regulation of protein phosphorylation. The STRING database revealed that Trem-2 directly target two gene nodes (Pik3ca and Pik3r1), which are key transcriptional cofactors of the PI3K/Akt signaling pathway. KEGG pathways include the "PI3K-Akt signaling pathway," the "thyroid hormone signaling pathway", "prostate cancer," the "longevity regulating pathway," and "insulin resistance." Expression of p-PI3K and p-Akt protein, measured by immunofluorescence and western blotting, was markedly increased in the FAC groups. Trem-2 siRNA caused partial reduction of these two proteins (p-PI3K and p-Akt) compared to the FAC alone group. CONCLUSION: The FAC promoted osteoclast differentiation through the Trem-2-mediated PI3K/Akt signaling pathway. However, its regulation osteoclastogenesis should be verified through further in vivo studies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Compostos Férricos/farmacologia , Células Mieloides/metabolismo , Osteoclastos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Compostos de Amônio Quaternário/farmacologia , Animais , Relação Dose-Resposta a Droga , Camundongos , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA