Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109609, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38827406

RESUMO

Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood. We isolated atrial EL organelles from AF goat biopsies and conducted a comprehensive integrated omics analysis to study the EL-specific proteins and pathways. We also performed electron tomography, protein and enzyme assays on these biopsies. Our results revealed the upregulation of the AMPK pathway and the expression of EL-specific proteins that were not found in whole tissue lysates, including GAA, DYNLRB1, CLTB, SIRT3, CCT2, and muscle-specific HSPB2. We also observed structural anomalies, such as autophagic-vacuole formation, irregularly shaped mitochondria, and glycogen deposition. Our results provide molecular information suggesting EL play a role in AF disease process over extended time frames.

2.
Biophys J ; 122(15): 3044-3059, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37329137

RESUMO

Spontaneous calcium release by ryanodine receptors (RyRs) due to intracellular calcium overload results in delayed afterdepolarizations, closely associated with life-threatening arrhythmias. In this regard, inhibiting lysosomal calcium release by two-pore channel 2 (TPC2) knockout has been shown to reduce the incidence of ventricular arrhythmias under ß-adrenergic stimulation. However, mechanistic investigations into the role of lysosomal function on RyR spontaneous release remain missing. We investigate the calcium handling mechanisms by which lysosome function modulates RyR spontaneous release, and determine how lysosomes are able to mediate arrhythmias by its influence on calcium loading. Mechanistic studies were conducted using a population of biophysically detailed mouse ventricular models including for the first time modeling of lysosomal function, and calibrated by experimental calcium transients modulated by TPC2. We demonstrate that lysosomal calcium uptake and release can synergistically provide a pathway for fast calcium transport, by which lysosomal calcium release primarily modulates sarcoplasmic reticulum calcium reuptake and RyR release. Enhancement of this lysosomal transport pathway promoted RyR spontaneous release by elevating RyR open probability. In contrast, blocking either lysosomal calcium uptake or release revealed an antiarrhythmic impact. Under conditions of calcium overload, our results indicate that these responses are strongly modulated by intercellular variability in L-type calcium current, RyR release, and sarcoplasmic reticulum calcium-ATPase reuptake. Altogether, our investigations identify that lysosomal calcium handling directly influences RyR spontaneous release by regulating RyR open probability, suggesting antiarrhythmic strategies and identifying key modulators of lysosomal proarrhythmic action.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Arritmias Cardíacas/metabolismo , Adrenérgicos/metabolismo , Modelos Animais de Doenças , Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo
3.
Br J Clin Pharmacol ; 89(3): 1176-1186, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36256474

RESUMO

AIMS: Amodiaquine is a 4-aminoquinoline used extensively for the treatment and prevention of malaria. Orally administered amodiaquine is largely converted to the active metabolite desethylamodiaquine. Amodiaquine can cause bradycardia, hypotension, and electrocardiograph QT interval prolongation, but the relationship of these changes to drug concentrations is not well characterized. METHODS: We conducted a secondary analysis of a pharmacokinetic study of the cardiac safety of amodiaquine (10 mg base/kg/day over 3 days) in 54 Kenyan adults (≥18 years) with uncomplicated malaria. Nonlinear mixed effects modelling was used to assess amodiaquine and desethylamodiaquine concentration-effect relationships for vital sign (pulse rate, blood pressure) and electrocardiograph interval (QT, QRS, PR) outcomes. We also measured the spontaneous beating heart rate after cumulative dosing of amodiaquine and desethylamodiaquine in isolated mouse atrial preparations. RESULTS: Amodiaquine and desethylamodiaquine caused concentration-dependent mean decreases in pulse rate (1.9 beats/min per 100 nmol/L; 95% confidence interval: 1.5-2.4), supine systolic blood pressure (1.7 mmHg per 100 nmol/L; 1.2-2.1), erect systolic blood pressure (1.5 mmHg per 100 nmol/L; 1.0-2.0) and erect diastolic blood pressure (1.4 mmHg per 100 nmol/L; 1.0-1.7). The mean QT interval prolongation was 1.4 ms per 100 nmol/L irrespective of correction factor after adjustment for residual heart rate dependency. There was no significant effect of drug concentration on postural change in blood pressure or PR and QRS intervals. In mouse atria, the spontaneous beating rate was significantly reduced by amodiaquine (n = 6) and desethylamodiaquine (n = 8) at 3 µmol/L (amodiaquine: 10 ± 2%; desethylamodiaquine: 12 ± 3%) and 10 µmol/L (amodiaquine: 50 ± 7%; desethylamodiaquine: 46 ± 6%) concentrations with no significant difference in potency between the 2 compounds. CONCLUSION: Amodiaquine and desethylamodiaquine have concentration-dependent effects on heart rate, blood pressure, and ventricular repolarization.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Amodiaquina/efeitos adversos , Antimaláricos/efeitos adversos , Quênia , Malária/tratamento farmacológico , Malária/prevenção & controle
4.
Front Pharmacol ; 13: 951897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105228

RESUMO

Atrial arrhythmias, such as atrial fibrillation (AF), are a major mortality risk and a leading cause of stroke. The IP3 signalling pathway has been proposed as an atrial-specific target for AF therapy, and atrial IP3 signalling has been linked to the activation of calcium sensitive adenylyl cyclases AC1 and AC8. We investigated the involvement of AC1 in the response of intact mouse atrial tissue and isolated guinea pig atrial and sino-atrial node (SAN) cells to the α-adrenoceptor agonist phenylephrine (PE) using the selective AC1 inhibitor ST034307. The maximum rate change of spontaneously beating mouse right atrial tissue exposed to PE was reduced from 14.5% to 8.2% (p = 0.005) in the presence of 1 µM ST034307, whereas the increase in tension generated in paced left atrial tissue in the presence of PE was not inhibited by ST034307 (Control = 14.2%, ST034307 = 16.3%; p > 0.05). Experiments were performed using isolated guinea pig atrial and SAN cells loaded with Fluo-5F-AM to record changes in calcium transients (CaT) generated by 10 µM PE in the presence and absence of 1 µM ST034307. ST034307 significantly reduced the beating rate of SAN cells (0.34-fold decrease; p = 0.003) but did not inhibit changes in CaT amplitude in response to PE in atrial cells. The results presented here demonstrate pharmacologically the involvement of AC1 in the downstream response of atrial pacemaker activity to α-adrenoreceptor stimulation and IP3R calcium release.

5.
iScience ; 24(9): 102949, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34466782

RESUMO

The importance of lysosomes in cardiac physiology and pathology is well established, and evidence for roles in calcium signaling is emerging. We describe a label-free proteomics method suitable for small cardiac tissue biopsies based on density-separated fractionation, which allows study of endolysosomal (EL) proteins. Density gradient fractions corresponding to tissue lysate; sarcoplasmic reticulum (SR), mitochondria (Mito) (1.3 g/mL); and EL with negligible contamination from SR or Mito (1.04 g/mL) were analyzed using Western blot, enzyme activity assay, and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis (adapted discontinuous Percoll and sucrose differential density gradient). Kyoto Encyclopedia of Genes and Genomes, Reactome, Panther, and Gene Ontology pathway analysis showed good coverage of RAB proteins and lysosomal cathepsins (including cardiac-specific cathepsin D) in the purified EL fraction. Significant EL proteins recovered included catalytic activity proteins. We thus present a comprehensive protocol and data set of guinea pig atrial EL organelle proteomics using techniques also applicable for non-cardiac tissue.

6.
R Soc Open Sci ; 8(4): 210235, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33996135

RESUMO

Hydroxychloroquine (HCQ), the hydroxyl derivative of chloroquine (CQ), is widely used in the treatment of rheumatological conditions (systemic lupus erythematosus, rheumatoid arthritis) and is being studied for the treatment and prevention of COVID-19. Here, we investigate through mathematical modelling the safety profile of HCQ, CQ and other QT-prolonging anti-infective agents to determine their risk categories for Torsade de Pointes (TdP) arrhythmia. We performed safety modelling with uncertainty quantification using a risk classifier based on the qNet torsade metric score, a measure of the net charge carried by major currents during the action potential under inhibition of multiple ion channels by a compound. Modelling results for HCQ at a maximum free therapeutic plasma concentration (free C max) of approximately 1.2 µM (malaria dosing) indicated it is most likely to be in the high-intermediate-risk category for TdP, whereas CQ at a free C max of approximately 0.7 µM was predicted to most likely lie in the intermediate-risk category. Combining HCQ with the antibacterial moxifloxacin or the anti-malarial halofantrine (HAL) increased the degree of human ventricular action potential duration prolongation at some or all concentrations investigated, and was predicted to increase risk compared to HCQ alone. The combination of HCQ/HAL was predicted to be the riskiest for the free C max values investigated, whereas azithromycin administered individually was predicted to pose the lowest risk. Our simulation approach highlights that the torsadogenic potentials of HCQ, CQ and other QT-prolonging anti-infectives used in COVID-19 prevention and treatment increase with concentration and in combination with other QT-prolonging drugs.

7.
Am J Physiol Heart Circ Physiol ; 320(1): H95-H107, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064562

RESUMO

Inositol trisphosphate (IP3) is a Ca2+-mobilizing second messenger shown to modulate atrial muscle contraction and is thought to contribute to atrial fibrillation. Cellular pathways underlying IP3 actions in cardiac tissue remain poorly understood, and the work presented here addresses the question whether IP3-mediated Ca2+ release from the sarcoplasmic reticulum is linked to adenylyl cyclase activity including Ca2+-stimulated adenylyl cyclases (AC1 and AC8) that are selectively expressed in atria and sinoatrial node (SAN). Immunocytochemistry in guinea pig atrial myocytes identified colocalization of type 2 IP3 receptors with AC8, while AC1 was located in close vicinity. Intracellular photorelease of IP3 by UV light significantly enhanced the amplitude of the Ca2+ transient (CaT) evoked by electrical stimulation of atrial myocytes (31 ± 6% increase 60 s after photorelease, n = 16). The increase in CaT amplitude was abolished by inhibitors of adenylyl cyclases (MDL-12,330) or protein kinase A (H89), showing that cAMP signaling is required for this effect of photoreleased IP3. In mouse, spontaneously beating right atrial preparations, phenylephrine, an α-adrenoceptor agonist with effects that depend on IP3-mediated Ca2+ release, increased the maximum beating rate by 14.7 ± 0.5%, n = 10. This effect was substantially reduced by 2.5 µmol/L 2-aminoethyl diphenylborinate and abolished by a low dose of MDL-12,330, observations which are again consistent with a functional interaction between IP3 and cAMP signaling involving Ca2+ stimulation of adenylyl cyclases in the SAN pacemaker. Understanding the interaction between IP3 receptor pathways and Ca2+-stimulated adenylyl cyclases provides important insights concerning acute mechanisms for initiation of atrial arrhythmias.NEW & NOTEWORTHY This study provides evidence supporting the proposal that IP3 signaling in cardiac atria and sinoatrial node involves stimulation of Ca2+-activated adenylyl cyclases (AC1 and AC8) by IP3-evoked Ca2+ release from junctional sarcoplasmic reticulum. AC8 and IP3 receptors are shown to be located close together, while AC1 is nearby. Greater understanding of these novel aspects of the IP3 signal transduction mechanism is important for future study in atrial physiology and pathophysiology, particularly atrial fibrillation.


Assuntos
Adenilil Ciclases/metabolismo , Relógios Biológicos , Sinalização do Cálcio , Átrios do Coração/enzimologia , Frequência Cardíaca , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Miócitos Cardíacos/enzimologia , Nó Sinoatrial/enzimologia , Potenciais de Ação , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cobaias , Átrios do Coração/citologia , Isoenzimas , Masculino , Camundongos , Retículo Sarcoplasmático/enzimologia , Fatores de Tempo
8.
iScience ; 23(7): 101334, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32674058

RESUMO

Cardiac stimulation via sympathetic neurons can potentially trigger arrhythmias. We present approaches to study neuron-cardiomyocyte interactions involving optogenetic selective probing and all-optical electrophysiology to measure activity in an automated fashion. Here we demonstrate the utility of optical interrogation of sympathetic neurons and their effects on macroscopic cardiomyocyte network dynamics to address research targets such as the effects of adrenergic stimulation via the release of neurotransmitters, the effect of neuronal numbers on cardiac behavior, and the applicability of optogenetics in mechanistic in vitro studies. As arrhythmias are emergent behaviors that involve the coordinated activity of millions of cells, we image at macroscopic scales to capture complex dynamics. We show that neurons can both decrease and increase wave stability and re-entrant activity in culture depending on their induced activity-a finding that may help us understand the often conflicting results seen in experimental and clinical studies.

9.
J Physiol ; 596(17): 3951-3965, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29928770

RESUMO

KEY POINTS: A robust cardiac slicing approach was developed for optical mapping of transmural gradients in transmembrane potential (Vm ) and intracellular Ca2+ transient (CaT) of murine heart. Significant transmural gradients in Vm and CaT were observed in the left ventricle. Frequency-dependent action potentials and CaT alternans were observed in all ventricular regions with rapid pacing, with significantly greater incidence in the endocardium than epicardium. The observations demonstrate the feasibility of our new approach to cardiac slicing for systematic analysis of intrinsic transmural and regional gradients in Vm and CaT. ABSTRACT: Transmural and regional gradients in membrane potential and Ca2+ transient in the murine heart are largely unexplored. Here, we developed and validated a robust approach which combines transverse ultra-thin cardiac slices and high resolution optical mapping to enable systematic analysis of transmural and regional gradients in transmembrane potential (Vm ) and intracellular Ca2+ transient (CaT) across the entire murine ventricles. The voltage dye RH237 or Ca2+ dye Rhod-2 AM were loaded through the coronary circulation using a Langendorff perfusion system. Short-axis slices (300 µm thick) were prepared from the entire ventricles (from the apex to the base) by using a high-precision vibratome. Action potentials (APs) and CaTs were recorded with optical mapping during steady-state baseline and rapid pacing. Significant transmural gradients in Vm and CaT were observed in the left ventricle, with longer AP duration (APD50 and APD75 ) and CaT duration (CaTD50 and CaTD75 ) in the endocardium compared with that in the epicardium. No significant regional gradients were observed along the apico-basal axis of the left ventricle. Interventricular gradients were detected with significantly shorter APD50 , APD75 and CaTD50 in the right ventricle compared with left ventricle and ventricular septum. During rapid pacing, AP and CaT alternans were observed in most ventricular regions, with significantly greater incidence in the endocardium in comparison with epicardium. In conclusion, these observations demonstrate the feasibility of our new approach to cardiac slicing for systematic analysis of intrinsic transmural and regional gradients in Vm and CaT in murine ventricular tissue.


Assuntos
Sinalização do Cálcio , Endocárdio/metabolismo , Ventrículos do Coração/metabolismo , Coração/fisiologia , Potenciais da Membrana , Imagem Óptica/métodos , Pericárdio/metabolismo , Animais , Endocárdio/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Camundongos , Pericárdio/diagnóstico por imagem
10.
Prog Biophys Mol Biol ; 130(Pt B): 333-343, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28935153

RESUMO

The apelin peptide is described as one of the most potent inotropic agents, produced endogenously in a wide range of cells, including cardiomyocytes. Despite positive effects on cardiac contractility in multicellular preparations, as well as indications of cardio-protective actions in several diseases, its effects and mechanisms of action at the cellular level are incompletely understood. Here, we report apelin effects on dynamic mechanical characteristics of single ventricular cardiomyocytes, isolated from mouse models (control, apelin-deficient [Apelin-KO], apelin-receptor KO mouse [APJ-KO]), and rat. Dynamic changes in maximal velocity of cell shortening and relaxation were monitored. In addition, more traditional indicators of inotropic effects, such as maximum shortening (in mechanically unloaded cells) or peak force development (in auxotonic contracting cells, preloaded using the carbon fibre technique) were studied. The key finding is that, using Apelin-KO cardiomyocytes exposed to different preloads with the 2-carbon fibre technique, we observe a lowering of the slope of the end-diastolic stress-length relation in response to 10 nM apelin, an effect that is preload-dependent. This suggests a positive lusitropic effect of apelin, which could explain earlier counter-intuitive findings on an apelin-induced increase in contractility occurring without matching rise in oxygen consumption.


Assuntos
Apelina/metabolismo , Fenômenos Mecânicos , Miócitos Cardíacos/metabolismo , Animais , Apelina/deficiência , Apelina/genética , Fenômenos Biomecânicos , Técnicas de Inativação de Genes , Camundongos , Ratos
11.
Sci Rep ; 7: 40620, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094777

RESUMO

Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) stimulates calcium release from acidic stores such as lysosomes and is a highly potent calcium-mobilising second messenger. NAADP plays an important role in calcium signalling in the heart under basal conditions and following ß-adrenergic stress. Nevertheless, the spatial interaction of acidic stores with other parts of the calcium signalling apparatus in cardiac myocytes is unknown. We present evidence that lysosomes are intimately associated with the sarcoplasmic reticulum (SR) in ventricular myocytes; a median separation of 20 nm in 2D electron microscopy and 3.3 nm in 3D electron tomography indicates a genuine signalling microdomain between these organelles. Fourier analysis of immunolabelled lysosomes suggests a sarcomeric pattern (dominant wavelength 1.80 µm). Furthermore, we show that lysosomes form close associations with mitochondria (median separation 6.2 nm in 3D studies) which may provide a basis for the recently-discovered role of NAADP in reperfusion-induced cell death. The trigger hypothesis for NAADP action proposes that calcium release from acidic stores subsequently acts to enhance calcium release from the SR. This work provides structural evidence in cardiac myocytes to indicate the formation of microdomains between acidic and SR calcium stores, supporting emerging interpretations of NAADP physiology and pharmacology in heart.


Assuntos
Lisossomos/metabolismo , Lisossomos/ultraestrutura , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestrutura , Animais , Biomarcadores , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Masculino , NADP/análogos & derivados , NADP/metabolismo , Organelas/metabolismo , Coelhos
12.
Prog Biophys Mol Biol ; 121(2): 85-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27320383

RESUMO

Myocardial microstructure and its macroscopic materialisation are fundamental to the function of the heart. Despite this importance, characterisation of cellular features at the organ level remains challenging, and a unifying description of the structure of the heart is still outstanding. Here, we optimised diffusion tensor imaging data to acquire high quality data in ex vivo rabbit hearts in slack and contractured states, approximating diastolic and systolic conditions. The data were analysed with a suite of methods that focused on different aspects of the myocardium. In the slack heart, we observed a similar transmural gradient in helix angle of the primary eigenvector of up to 23.6°/mm in the left ventricle and 24.2°/mm in the right ventricle. In the contractured heart, the same transmural gradient remained largely linear, but was offset by up to +49.9° in the left ventricle. In the right ventricle, there was an increase in the transmural gradient to 31.2°/mm and an offset of up to +39.0°. The application of tractography based on each eigenvector enabled visualisation of streamlines that depict cardiomyocyte and sheetlet organisation over large distances. We observed multiple V- and N-shaped sheetlet arrangements throughout the myocardium, and insertion of sheetlets at the intersection of the left and right ventricle. This study integrates several complementary techniques to visualise and quantify the heart's microstructure, projecting parameter representations across different length scales. This represents a step towards a more comprehensive characterisation of myocardial microstructure at the whole organ level.


Assuntos
Imagem de Tensor de Difusão , Coração/fisiologia , Fenômenos Mecânicos , Miocárdio/citologia , Animais , Fenômenos Biomecânicos , Diástole , Humanos , Masculino , Coelhos , Sístole
13.
J Biol Chem ; 290(50): 30087-98, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26438825

RESUMO

Ca(2+)-permeable type 2 two-pore channels (TPC2) are lysosomal proteins required for nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca(2+) release in many diverse cell types. Here, we investigate the importance of TPC2 proteins for the physiology and pathophysiology of the heart. NAADP-AM failed to enhance Ca(2+) responses in cardiac myocytes from Tpcn2(-/-) mice, unlike myocytes from wild-type (WT) mice. Ca(2+)/calmodulin-dependent protein kinase II inhibitors suppressed actions of NAADP in myocytes. Ca(2+) transients and contractions accompanying action potentials were increased by isoproterenol in myocytes from WT mice, but these effects of ß-adrenoreceptor stimulation were reduced in myocytes from Tpcn2(-/-) mice. Increases in amplitude of L-type Ca(2+) currents evoked by isoproterenol remained unchanged in myocytes from Tpcn2(-/-) mice showing no loss of ß-adrenoceptors or coupling mechanisms. Whole hearts from Tpcn2(-/-) mice also showed reduced inotropic effects of isoproterenol and a reduced tendency for arrhythmias following acute ß-adrenoreceptor stimulation. Hearts from Tpcn2(-/-) mice chronically exposed to isoproterenol showed less cardiac hypertrophy and increased threshold for arrhythmogenesis compared with WT controls. Electron microscopy showed that lysosomes form close contacts with the sarcoplasmic reticulum (separation ∼ 25 nm). We propose that Ca(2+)-signaling nanodomains between lysosomes and sarcoplasmic reticulum dependent on NAADP and TPC2 comprise an important element in ß-adrenoreceptor signal transduction in cardiac myocytes. In summary, our observations define a role for NAADP and TPC2 at lysosomal/sarcoplasmic reticulum junctions as unexpected but major contributors in the acute actions of ß-adrenergic signaling in the heart and also in stress pathways linking chronic stimulation of ß-adrenoceptors to hypertrophy and associated arrhythmias.


Assuntos
Canais de Cálcio/fisiologia , Lisossomos/metabolismo , Miocárdio/metabolismo , NADP/análogos & derivados , Receptores Adrenérgicos beta/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Animais , Canais de Cálcio/genética , Cobaias , Masculino , Camundongos , Camundongos Knockout , NADP/fisiologia
14.
Heart Rhythm ; 12(10): 2186-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26025323

RESUMO

BACKGROUND: Bradycardic agents are of interest for the treatment of ischemic heart disease and heart failure, as heart rate is an important determinant of myocardial oxygen consumption. OBJECTIVES: The purpose of this study was to investigate the propensity of hydroxychloroquine (HCQ) to cause bradycardia. METHODS: We assessed the effects of HCQ on (1) cardiac beating rate in vitro (mice); (2) the "funny" current (If) in isolated guinea pig sinoatrial node (SAN) myocytes (1, 3, 10 µM); (3) heart rate and blood pressure in vivo by acute bolus injection (rat, dose range 1-30 mg/kg), (4) blood pressure and ventricular function during feeding (mouse, 100 mg/kg/d for 2 wk, tail cuff plethysmography, anesthetized echocardiography). RESULTS: In mouse atria, spontaneous beating rate was significantly (P < .05) reduced (by 9% ± 3% and 15% ± 2% at 3 and 10 µM HCQ, n = 7). In guinea pig isolated SAN cells, HCQ conferred a significant reduction in spontaneous action potential firing rate (17% ± 6%, 1 µM dose) and a dose-dependent reduction in If (13% ± 3% at 1 µM; 19% ± 2% at 3 µM). Effects were also observed on L-type calcium ion current (ICaL) (12% ± 4% reduction) and rapid delayed rectifier potassium current (IKr) (35% ± 4%) at 3 µM. Intravenous HCQ decreased heart rate in anesthetized rats (14.3% ± 1.1% at 15mg/kg; n = 6) without significantly reducing mean arterial blood pressure. In vivo feeding studies in mice showed no significant change in systolic blood pressure nor left ventricular function. CONCLUSIONS: We have shown that HCQ acts as a bradycardic agent in SAN cells, in atrial preparations, and in vivo. HCQ slows the rate of spontaneous action potential firing in the SAN through multichannel inhibition, including that of If.


Assuntos
Bradicardia/induzido quimicamente , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Hidroxicloroquina/farmacologia , Nó Sinoatrial/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Animais , Bradicardia/complicações , Bradicardia/fisiopatologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Cobaias , Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/fisiologia , Masculino , Camundongos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Nó Sinoatrial/efeitos dos fármacos
15.
Front Physiol ; 6: 80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859219

RESUMO

Mechanisms underlying pacemaker activity in the sinus node remain controversial, with some ascribing a dominant role to timing events in the surface membrane ("membrane clock") and others to uptake and release of calcium from the sarcoplasmic reticulum (SR) ("calcium clock"). Here we discuss recent evidence on mechanisms underlying pacemaker activity with a particular emphasis on the many roles of calcium. There are particular areas of controversy concerning the contribution of calcium spark-like events and the importance of I(f) to spontaneous diastolic depolarisation, though it will be suggested that neither of these is essential for pacemaking. Sodium-calcium exchange (NCX) is most often considered in the context of mediating membrane depolarisation after spark-like events. We present evidence for a broader role of this electrogenic exchanger which need not always depend upon these spark-like events. Short (milliseconds or seconds) and long (minutes) term influences of calcium are discussed including direct regulation of ion channels and NCX, and control of the activity of calcium-dependent enzymes (including CaMKII, AC1, and AC8). The balance between the many contributory factors to pacemaker activity may well alter with experimental and clinical conditions, and potentially redundant mechanisms are desirable to ensure the regular spontaneous heart rate that is essential for life. This review presents evidence that calcium is central to the normal control of pacemaking across a range of temporal scales and seeks to broaden the accepted description of the "calcium clock" to cover these important influences.

16.
Front Physiol ; 6: 23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25713538

RESUMO

The sino-atrial node (SAN) provides the electrical stimulus to initiate every heart beat. Cellular processes underlying this activity have been debated extensively, especially with regards to the role of intracellular calcium. We have used whole-cell application of 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), a rapid calcium chelator, to guinea pig isolated SAN myocytes to assess the effect of rapid reduction of intracellular calcium on SAN cell electrical activity. High-dose (10 mM) BAPTA induced rapid and complete cessation of rhythmic action potential (AP) firing (time to cessation 5.5 ± 1.7 s). Over a range of concentrations, BAPTA induced slowing of action potential firing and disruption of rhythmic activity, which was dose-dependent in its time of onset. Exposure to BAPTA was associated with stereotyped action potential changes similar to those previously reported in the presence of ryanodine, namely depolarization of the most negative diastolic potential, prolongation of action potentials and a reduction in action potential amplitude. These experiments are consistent with the view that cytosolic calcium is essential to the maintenance of rhythmic pacemaker activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA