Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 116(1): 123-128, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30584094

RESUMO

Food security relies on the resilience of staple food crops to climatic variability and extremes, but the climate resilience of European wheat is unknown. A diversity of responses to disturbance is considered a key determinant of resilience. The capacity of a sole crop genotype to perform well under climatic variability is limited; therefore, a set of cultivars with diverse responses to weather conditions critical to crop yield is required. Here, we show a decline in the response diversity of wheat in farmers' fields in most European countries after 2002-2009 based on 101,000 cultivar yield observations. Similar responses to weather were identified in cultivar trials among central European countries and southern European countries. A response diversity hotspot appeared in the trials in Slovakia, while response diversity "deserts" were identified in Czechia and Germany and for durum wheat in southern Europe. Positive responses to abundant precipitation were lacking. This assessment suggests that current breeding programs and cultivar selection practices do not sufficiently prepare for climatic uncertainty and variability. Consequently, the demand for climate resilience of staple food crops such as wheat must be better articulated. Assessments and communication of response diversity enable collective learning across supply chains. Increased awareness could foster governance of resilience through research and breeding programs, incentives, and regulation.


Assuntos
Clima , Triticum/fisiologia , Produção Agrícola/estatística & dados numéricos , Europa (Continente) , Abastecimento de Alimentos , Melhoramento Vegetal , Análise de Componente Principal , Chuva , Temperatura , Tempo (Meteorologia)
3.
Sci Rep ; 5: 17106, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26596213

RESUMO

Genetically modified (GM) crops have been commercially grown for two decades. GM maize is one of 3 species with the highest acreage and specific events. Many countries established a mandatory labeling of products containing GM material, with thresholds for adventitious presence, to support consumers' freedom of choice. In consequence, coexistence systems need to be introduced to facilitate commercial culture of GM and non-GM crops in the same agricultural area. On modeling adventitious GM cross-pollination distribution within maize fields, we deduced a simple equation to estimate overall GM contents (%GM) of conventional fields, irrespective of its shape and size, and with no previous information on possible GM pollen donor fields. A sampling strategy was designed and experimentally validated in 19 agricultural fields. With 9 samples, %GM quantification requires just one analytical GM determination while identification of the pollen source needs 9 additional analyses. A decision support tool is provided.


Assuntos
Fluxo Gênico , Modelos Genéticos , Zea mays/genética , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Genes de Plantas , Melhoramento Genético , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Polinização , Zea mays/fisiologia
4.
Plant Mol Biol ; 73(3): 349-62, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20349115

RESUMO

The introduction of genetically modified organisms (GMO) in many countries follows strict regulations to ensure that only safety-tested products are marketed. Over the last few years, targeted approaches have been complemented by profiling methods to assess possible unintended effects of transformation. Here we used a commercial (Affymertix) microarray platform (i.e. allowing assessing the expression of approximately 1/3 of the genes of maize) to evaluate transcriptional differences between commercial MON810 GM maize and non-transgenic crops in real agricultural conditions, in a region where about 70% of the maize grown was MON810. To consider natural variation in gene expression in relation to biotech plants we took two common MON810/non-GM variety pairs as examples, and two farming practices (conventional and low-nitrogen fertilization). MON810 and comparable non-GM varieties grown in the field have very low numbers of sequences with differential expression, and their identity differs among varieties. Furthermore, we show that the differences between a given MON810 variety and the non-GM counterpart do not appear to depend to any major extent on the assayed cultural conditions, even though these differences may slightly vary between the conditions. In our study, natural variation explained most of the variability in gene expression among the samples. Up to 37.4% was dependent upon the variety (obtained by conventional breeding) and 31.9% a result of the fertilization treatment. In contrast, the MON810 GM character had a very minor effect (9.7%) on gene expression in the analyzed varieties and conditions, even though similar cryIA(b) expression levels were detected in the two MON810 varieties and nitrogen treatments. This indicates that transcriptional differences of conventionally-bred varieties and under different environmental conditions should be taken into account in safety assessment studies of GM plants.


Assuntos
Agricultura/métodos , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Fertilizantes , Regulação da Expressão Gênica de Plantas , Proteínas Hemolisinas/genética , Nitrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas/classificação , Análise de Componente Principal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Zea mays/classificação
5.
Transgenic Res ; 18(5): 801-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19396622

RESUMO

Maize is a major food crop and genetically modified (GM) varieties represented 24% of the global production in 2007. Authorized GM organisms have been tested for human and environmental safety. We previously used microarrays to compare the transcriptome profiles of widely used commercial MON810 versus near-isogenic varieties and reported differential expression of a small set of sequences in leaves of in vitro cultured plants of AristisBt/Aristis and PR33P67/PR33P66 (Coll et al. 2008). Here we further assessed the significance of these differential expression patterns in plants grown in a real context, i.e. in the field. Most sequences that were differentially expressed in plants cultured in vitro had the same expression values in MON810 and comparable varieties when grown in the field; and no sequence was found to be differentially regulated in the two variety pairs grown in the field. The differential expression patterns observed between in vitro and field culture were similar between MON810 and comparable varieties, with higher divergence between the two conventional varieties. This further indicates that MON810 and comparable non-GM varieties are equivalent except for the introduced character.


Assuntos
Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/metabolismo , Zea mays/metabolismo , DNA de Plantas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA