Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(35): 16718-16728, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39172122

RESUMO

The field emission properties of rhenium diselenide (ReSe2) nanosheets on Si/SiO2 substrates, obtained through mechanical exfoliation, have been investigated. The n-type conduction was confirmed by using nano-manipulated tungsten probes inside a scanning electrode microscope to directly contact the ReSe2 flake in back-gated field effect transistor configuration, avoiding any lithographic process. By performing a finite element electrostatic simulation of the electric field, it is demonstrated that the use of a tungsten probe as anode, at a controlled distance from the ReSe2 emitter surface, allows the collection of emitted electrons from a reduced area that furtherly decreases by reducing the tip-sample distance, i.e. allowing a local characterization of the field emission properties. Experimentally, it is shown that the turn-on voltage can be linearly reduced by reducing the cathode-anode separation distance. By comparing the measured current-voltage characteristics with the numerical simulations, it is also shown that the effective field enhancement on the emitter surface is larger than expected because of surface defects. Finally, it is confirmed that ReSe2 nanosheets are suitable field emitters with high time stability and low current fluctuations.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36881875

RESUMO

The development of novel three-dimensional (3D) nanomaterials combining high biocompatibility, precise mechanical characteristics, electrical conductivity, and controlled pore size to enable cell and nutrient permeation is highly sought after for cardiac tissue engineering applications including repair of damaged heart tissues following myocardial infarction and heart failure. Such unique characteristics can collectively be found in hybrid, highly porous tridimensional scaffolds based on chemically functionalized graphene oxide (GO). By exploiting the rich reactivity of the GO's basal epoxydic and edge carboxylate moieties when interacting, respectively, with NH2 and NH3+ groups of linear polyethylenimines (PEIs), 3D architectures with variable thickness and porosity can be manufactured, making use of the layer-by-layer technique through the subsequent dipping in GO and PEI aqueous solutions, thereby attaining enhanced compositional and structural control. The elasticity modulus of the hybrid material is found to depend on scaffold's thickness, with the lowest value of 13 GPa obtained in samples containing the highest number of alternating layers. Thanks to the amino-rich composition of the hybrid and the established biocompatibility of GO, the scaffolds do not exhibit cytotoxicity; they promote cardiac muscle HL-1 cell adhesion and growth without interfering with the cell morphology and increasing cardiac markers such as Connexin-43 and Nkx 2.5. Our novel strategy for scaffold preparation thus overcomes the drawbacks associated with the limited processability of pristine graphene and low GO conductivity, and it enables the production of biocompatible 3D GO scaffolds covalently functionalized with amino-based spacers, which is advantageous for cardiac tissue engineering applications. In particular, they displayed a significant increase in the number of gap junctions compared to HL-1 cultured on CTRL substrates, which render them key components for repairing damaged heart tissues as well as being used for 3D in vitro cardiac modeling investigations.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36839018

RESUMO

Photodetectors based on vertical multi-walled carbon nanotube (MWCNT) film-Si heterojunctions are realized by growing MWCNTs on n-type Si substrates with a top surface covered by Si3N4 layers. Spatially resolved photocurrent measurements reveal that higher photo detection is achieved in regions with thinner MWCNT film, where nearly 100% external quantum efficiency is achieved. Hence, we propose a simple method based on the use of scotch tape with which to tune the thickness and density of as-grown MWCNT film and enhance device photo-response.

4.
Phys Chem Chem Phys ; 24(22): 13935-13940, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621118

RESUMO

We investigate the oxidation mechanism of the layered model system GeAs. In situ X-ray photoelectron spectroscopy experiments performed by irradiating an individual flake with synchrotron radiation in the presence of oxygen show that while As leaves the GeAs surface upon oxidation, a Ge-rich ultrathin oxide film is being formed in the topmost layer of the flake. We develop a theoretical model that supports the layer-by-layer oxidation of GeAs, with a logarithmic kinetics. Finally, assuming that the activation energy for the oxidation process changes linearly with coverage, we estimate that the activation energy for As oxidation is almost twice that for Ge at room temperature.

5.
Nanotechnology ; 33(24)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35259735

RESUMO

Clean water is vital for healthy ecosystems, for human life and, in a broader sense, it is directly linked to our socio-economic development. Nevertheless, climate change, pollution and increasing world population will likely make clean water scarcer in the near future. Consequently, it becomes imperative to develop novel materials and more efficient ways of treating waste and contaminated water. Carbon nanotube (CNT) sponges, for example, are excellent in removing oleophilic contaminants; however, due to their super-hydrophobic nature, they are not as efficient when it comes to absorbing water-soluble substances. Here, by means of a scalable method consisting of simply treating CNT sponges at mild temperatures in air, we attach oxygen-containing functional groups to the CNT surface. The functionalized sponge becomes hydrophilic while preserving its micro- and macro-structure and can therefore be used to successfully remove toxic contaminants, such as pesticides, that are dissolved in water. This discovery expands the current range of applications of CNT sponges to those fields in which a hydrophilic character of the sponge is more suitable.

6.
Nanomaterials (Basel) ; 9(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717979

RESUMO

Metal-insulator-semiconductor-insulator-metal (MISIM) heterostructures, with rectifying current-voltage characteristics and photosensitivity in the visible and near-infrared spectra, are fabricated and studied. It is shown that the photocurrent can be enhanced by adding a multi-walled carbon nanotube film in the contact region to achieve a responsivity higher than 100   mA   W - 1 under incandescent light of 0.1   mW   cm - 2 . The optoelectrical characteristics of the MISIM heterostructures are investigated at lower and higher biases and are explained by a band model based on two asymmetric back-to-back Schottky barriers. The forward current of the heterojunctions is due to majority-carrier injection over the lower barrier, while the reverse current exhibits two different conduction regimes corresponding to the diffusion of thermal/photo generated carriers and majority-carrier tunneling through the higher Schottky barrier. The two conduction regimes in reverse bias generate two plateaus, over which the photocurrent increases linearly with the light intensity that endows the detector with bias-controlled photocurrent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA