Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2784: 101-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502481

RESUMO

Plant small RNAs are 21-24 nucleotide, noncoding RNAs that function as regulators in plant growth and development. Colorimetric detection of plant small RNAs was made possible with the introduction of locked nucleic acid probes. However, fluorescent detection of plant small RNAs has been challenging due to the high autofluorescence from plant tissue. Here we report a fluorescent in situ detection method for plant small RNAs. This method can be applied to most plant samples and tissue types and also can be adapted for single-molecule detection of small RNAs with super-resolution microscopy.


Assuntos
Sondas de Ácido Nucleico , RNA não Traduzido , Hibridização in Situ Fluorescente/métodos , RNA de Plantas/genética , Corantes , Plantas/genética
2.
Plant Physiol ; 194(3): 1481-1497, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38048422

RESUMO

Plant extracellular vesicles (EVs) are membrane-bound organelles involved mainly in intercellular communications and defense responses against pathogens. Recent studies have demonstrated the presence of proteins, nucleic acids including small RNAs, and lipids along with other metabolites in plant EVs. Here, we describe the isolation and characterization of EVs from sorghum (Sorghum bicolor). Nanoparticle tracking analysis, dynamic light scattering, and cryo-electron tomography showed the presence of a heterogeneous population of EVs isolated from the apoplastic wash of sorghum leaves. Cryo-electron microscopy revealed that EVs had a median size of 110 nm and distinct populations of vesicles with single or multiple lipid bilayers and low or high amounts of contents. The heterogeneity was further supported by data showing that only a subset of EVs that were stained with a membrane dye, Potomac Gold, were also stained with the membrane-permeant esterase-dependent dye, calcein acetoxymethyl ester. Proteomic analysis identified 437 proteins that were enriched in multiple EV isolations, with the majority of these also found in the EV proteome of Arabidopsis (Arabidopsis thaliana). These data suggest a partial conservation of EV contents and function between the monocot, sorghum, and a distantly related eudicot, Arabidopsis.


Assuntos
Arabidopsis , Vesículas Extracelulares , Sorghum , Proteoma , Arabidopsis/genética , Sorghum/genética , Microscopia Crioeletrônica , Proteômica , Grão Comestível
3.
Sci Adv ; 9(43): eadi7407, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37878708

RESUMO

Chloroplast morphology changes during immunity, giving rise to tubule-like structures known as stromules. Stromules extend along microtubules and anchor to actin filaments along nuclei to promote perinuclear chloroplast clustering. This facilitates the transport of defense molecules/proteins from chloroplasts to the nucleus. Evidence for a direct role for stromules in immunity is lacking since, currently, there are no known genes that regulate stromule biogenesis. We show that a calponin homology (CH) domain containing kinesin, KIS1 (kinesin required for inducing stromules 1), is required for stromule formation during TNL [TIR (Toll/Interleukin-1 receptor)-type nucleotide-binding leucine-rich repeat]-immune receptor-mediated immunity. Furthermore, KIS1 is required for TNL-mediated immunity to bacterial and viral pathogens. The microtubule-binding motor domain of KIS1 is required for stromule formation while the actin-binding, CH domain is required for perinuclear chloroplast clustering. We show that KIS1 functions through early immune signaling components, EDS1 and PAD4, with salicylic acid-induced stromules requiring KIS1. Thus, KIS1 represents a player in stromule biogenesis.


Assuntos
Cloroplastos , Cinesinas , Cinesinas/genética , Plastídeos , Proteínas dos Microfilamentos/genética , Calponinas
4.
J Vis Exp ; (193)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010277

RESUMO

Understanding how plants and pathogens interact, and whether that interaction culminates in defense or disease, is required to develop stronger and more sustainable strategies for plant health. Advances in methods that more effectively image plant-pathogen samples during infection and colonization have yielded tools such as the rice leaf sheath assay, which has been useful in monitoring infection and early colonization events between rice and the fungal pathogen, Magnaporthe oryzae. This hemi-biotrophic pathogen causes severe disease loss in rice and related monocots, including millet, rye, barley, and more recently, wheat. The leaf sheath assay, when performed correctly, yields an optically clear plant section, several layers thick, which allows researchers to perform live-cell imaging during pathogen attack or generate fixed samples stained for specific features. Detailed cellular investigations into the barley-M. oryzae interaction have lagged behind those of the rice host, in spite of the growing importance of this grain as a food source for animals and humans and as fermented beverages. Reported here is the development of a barley leaf sheath assay for intricate studies of M. oryzae interactions during the first 48 h post-inoculation. The leaf sheath assay, regardless of which species is being studied, is delicate; provided is a protocol that covers everything, from barley growth conditions and obtaining a leaf sheath, to inoculation, incubation, and imaging of the pathogen on plant leaves. This protocol can be optimized for high-throughput screening using something as simple as a smartphone for imaging purposes.


Assuntos
Ascomicetos , Hordeum , Magnaporthe , Oryza , Humanos , Smartphone , Doenças das Plantas/microbiologia
5.
Plant Cell ; 35(6): 1936-1955, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37070465

RESUMO

In plants, cytoplasmic mRNA decay is critical for posttranscriptionally controlling gene expression and for maintaining cellular RNA homeostasis. Arabidopsis DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1) is a cytoplasmic mRNA decay factor that interacts with proteins involved in mRNA decapping and nonsense-mediated mRNA decay (NMD). There is limited information on the functional role of DNE1 in RNA turnover, and the identities of its endogenous targets are unknown. In this study, we utilized RNA degradome approaches to globally investigate DNE1 substrates. Monophosphorylated 5' ends, produced by DNE1, should accumulate in mutants lacking the cytoplasmic exoribonuclease XRN4, but be absent from DNE1 and XRN4 double mutants. In seedlings, we identified over 200 such transcripts, most of which reflect cleavage within coding regions. While most DNE1 targets were NMD-insensitive, some were upstream ORF (uORF)-containing and NMD-sensitive transcripts, indicating that this endoribonuclease is required for turnover of a diverse set of mRNAs. Transgenic plants expressing DNE1 cDNA with an active-site mutation in the endoribonuclease domain abolished the in planta cleavage of transcripts, demonstrating that DNE1 endoribonuclease activity is required for cleavage. Our work provides key insights into the identity of DNE1 substrates and enhances our understanding of DNE1-mediated mRNA decay.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Helicases/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
iScience ; 25(11): 105262, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304122

RESUMO

Extracellular vesicles (EVs) are bioactive lipid-bilayer enclosed particles released from nearly all cells. One specialized site for EV shedding is the primary cilium. Here, we discover the conserved ion channel CLHM-1 as a ciliary EV cargo. Imaging of EVs released from sensory neuron cilia of Caenorhabditis elegans expressing fluorescently tagged CLHM-1 and TRP polycystin-2 channel PKD-2 shows enrichment of these cargoes in distinct EV subpopulations that are differentially shed in response to mating partner availability. PKD-2 alone is present in EVs shed from the cilium distal tip, whereas CLHM-1 EVs bud from a secondary site(s), including the ciliary base. Heterotrimeric and homodimeric kinesin-2 motors have discrete impacts on PKD-2 and CLHM-1 colocalization in both cilia and EVs. Total loss of kinesin-2 activity decreases shedding of PKD-2 but not CLHM-1 EVs. Our data demonstrate that anterograde intraflagellar transport is required for selective enrichment of protein cargoes into heterogeneous EVs with different signaling potentials.

7.
Front Chem ; 10: 842602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242744

RESUMO

The immune system is a complex network of various cellular components that must differentiate between pathogenic bacteria and the commensal bacteria of the human microbiome, where misrecognition is linked to inflammatory disorders. Fragments of bacterial cell wall peptidoglycan bind to pattern recognition receptors within macrophages, leading to immune activation. To study this complex process, a methodology to remodel and label the bacterial cell wall of two different species of bacteria was established using copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) and strain-promoted azide-alkyne cycloaddition (SPAAC). Additionally, an approach for three-dimensional (3D) culture of human macrophages and their invasion with relevant bacteria in a well-defined hydrogel-based synthetic matrix inspired by the microenvironment of the gut was established. Workflows were developed for human monocyte encapsulation and differentiation into macrophages in 3D culture with high viability. Bacteria invaded into macrophages permitted in situ peptidoglycan labeling. Macrophages exhibited biologically-relevant cytokine release in response to bacteria. This molecularly engineered, multi-dimensional bacteria-macrophage co-culture system will prove useful in future studies to observe immunostimulatory, bacterial fragment production and localization in the cell at the carbohydrate level for insights into how the immune system properly senses bacteria.

8.
J Am Chem Soc ; 144(4): 1647-1662, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35072462

RESUMO

Described is the spatiotemporally controlled labeling and patterning of biomolecules in live cells through the catalytic activation of bioorthogonal chemistry with light, referred to as "CABL". Here, an unreactive dihydrotetrazine (DHTz) is photocatalytically oxidized in the intracellular environment by ambient O2 to produce a tetrazine that immediately reacts with a trans-cyclooctene (TCO) dienophile. 6-(2-Pyridyl)dihydrotetrazine-3-carboxamides were developed as stable, cell permeable DHTz reagents that upon oxidation produce the most reactive tetrazines ever used in live cells with Diels-Alder kinetics exceeding k2 of 106 M-1 s-1. CABL photocatalysts are based on fluorescein or silarhodamine dyes with activation at 470 or 660 nm. Strategies for limiting extracellular production of singlet oxygen are described that increase the cytocompatibility of photocatalysis. The HaloTag self-labeling platform was used to introduce DHTz tags to proteins localized in the nucleus, mitochondria, actin, or cytoplasm, and high-yielding subcellular activation and labeling with a TCO-fluorophore were demonstrated. CABL is light-dose dependent, and two-photon excitation promotes CABL at the suborganelle level to selectively pattern live cells under no-wash conditions. CABL was also applied to spatially resolved live-cell labeling of an endogenous protein target by using TIRF microscopy to selectively activate intracellular monoacylglycerol lipase tagged with DHTz-labeled small molecule covalent inhibitor. Beyond spatiotemporally controlled labeling, CABL also improves the efficiency of "ordinary" tetrazine ligations by rescuing the reactivity of commonly used 3-aryl-6-methyltetrazine reporters that become partially reduced to DHTzs inside cells. The spatiotemporal control and fast rates of photoactivation and labeling of CABL should enable a range of biomolecular labeling applications in living systems.


Assuntos
Corantes Fluorescentes/química , Luz , Catálise , Reação de Cicloadição , Ciclo-Octanos/química , Escherichia coli/metabolismo , Corantes Fluorescentes/síntese química , Células HeLa , Compostos Heterocíclicos com 1 Anel/síntese química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Cinética , Proteínas Luminescentes/química , Microscopia de Fluorescência , Oxirredução
9.
Mol Plant Microbe Interact ; 34(10): 1209-1211, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34662144

RESUMO

Colletotrichum species are globally distributed and well known as members of a destructive phytopathogenic genus, causing the anthracnose disease in a wide variety of crops and fruits. Colletotrichum sublineola is the causal agent of the anthracnose disease in sorghum, causing losses of up to 50% in yield. Here, we used PacBio sequencing combined with RNA-seq to generate a chromosome-level assembly and annotation of the Colletotrichum sublineola strain CsGL1.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Colletotrichum , Sorghum , Colletotrichum/genética , Doenças das Plantas , Sorghum/genética , Transcriptoma/genética
10.
Bio Protoc ; 11(16): e4128, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541046

RESUMO

Analyzing cellular structures and the relative location of molecules is essential for addressing biological questions. Super-resolution microscopy techniques that bypass the light diffraction limit have become increasingly popular to study cellular molecule dynamics in situ. However, the application of super-resolution imaging techniques to detect small RNAs (sRNAs) is limited by the choice of proper fluorophores, autofluorescence of samples, and failure to multiplex. Here, we describe an sRNA-PAINT protocol for the detection of sRNAs at nanometer resolution. The method combines the specificity of locked nucleic acid probes and the low background, precise quantitation, and multiplexable characteristics of DNA Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT). Using this method, we successfully located sRNA targets that are important for development in maize anthers at sub-20 nm resolution and quantitated their exact copy numbers. Graphic abstract: Multiplexed sRNA-PAINT. Multiple Vetting and Analysis of RNA for In Situ Hybridization (VARNISH) probes with different docking strands (i.e., a, b, …) will be hybridized to samples. The first probe will be imaged with the a* imager. The a* imager will be washed off with buffer C, and then the sample will be imaged with b* imager. The wash and image steps can be repeated sequentially for multiplexing.

11.
Nat Commun ; 12(1): 4941, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400639

RESUMO

Plant small RNAs are important regulatory elements that fine-tune gene expression and maintain genome integrity by silencing transposons. Reproductive organs of monocots produce abundant phased, small interfering RNAs (phasiRNAs). The 21-nt reproductive phasiRNAs triggered by miR2118 are highly enriched in pre-meiotic anthers, and have been found in multiple eudicot species, in contrast with prior reports of monocot specificity. The 24-nt reproductive phasiRNAs are triggered by miR2275, and are highly enriched during meiosis in many angiosperms. Here, we report the widespread presence of the 21-nt reproductive phasiRNA pathway in eudicots including canonical and non-canonical microRNA (miRNA) triggers of this pathway. In eudicots, these 21-nt phasiRNAs are enriched in pre-meiotic stages, a spatiotemporal distribution consistent with that of monocots and suggesting a role in anther development. Although this pathway is apparently absent in well-studied eudicot families including the Brassicaceae, Solanaceae and Fabaceae, our work in eudicots supports an earlier singular finding in spruce, a gymnosperm, indicating that the pathway of 21-nt reproductive phasiRNAs emerged in seed plants and was lost in some lineages.


Assuntos
Magnoliopsida/metabolismo , Nucleotídeos/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/metabolismo , Sementes/metabolismo , Fragaria/genética , Fragaria/metabolismo , Regulação da Expressão Gênica de Plantas , Meiose , MicroRNAs/genética , Filogenia , Picea/genética , Proteínas de Plantas/genética , RNA de Cadeia Dupla/metabolismo , Solanaceae/metabolismo , Transcriptoma
12.
Exp Eye Res ; 203: 108371, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33248069

RESUMO

Congenital aniridia is caused by heterozygous mutations in the PAX6 gene. In this disease, congenital iris and foveal hypoplasia is associated with juvenile onset cataract, glaucoma, and corneal keratopathy. In rodents, Pax6 mutations result in a congenital reduction in ocular size that is not typically described in human aniridia. Here, the ocular morphometry of aniridia patients is compared with the lens phenotype of Pax6+/tm1/Pgr mice to reveal whether there are species differences in Pax6 regulation of lens development and homeostasis. Ultrasound biometry (UBM) revealed that eleven percent of aniridia patients exhibited mild microphthalmia while the anterior chamber depth of aniridic eyes was significantly reduced from 6 months of age onward. Although aniridic lens thickness was normal from birth, it was significantly decreased in aniridic lenses older than 30. Notably, 86% of aniridic lenses exhibited cataractous changes in this cohort. In addition, a significant proportion of aniridia patients develop lens subluxation as they age associated with reduced lens diameter as measured by anterior segment optical coherence tomography (AS-OCT). Analysis of young adult Pax6+/tm1/Pgr mouse lenses by micro-computed tomography (microCT), bright field and dark field imaging revealed that they are reduced in size but did not exhibit overt cataracts at this age. Overall, this study reveals that congenital microphthalmia as assessed by axial length, or microphakia, as assessed by lens thickness, are not typical in human aniridia, although these are primary manifestations of Pax6 mutations in mice, suggesting that PAX6 regulates some aspects of lens development differently between these species.


Assuntos
Aniridia/patologia , Catarata/patologia , Cristalino/patologia , Microftalmia/patologia , Adolescente , Adulto , Idoso , Animais , Aniridia/genética , Câmara Anterior/patologia , Comprimento Axial do Olho/patologia , Catarata/genética , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Mutantes , Microftalmia/genética , Microscopia Acústica , Pessoa de Meia-Idade , Fator de Transcrição PAX6/genética , Fenótipo , Microscopia com Lâmpada de Fenda , Tomografia de Coerência Óptica , Adulto Jovem
13.
mBio ; 11(5)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873766

RESUMO

Microbial syntrophy is universal in nature, profoundly affecting the composition and function of microbiomes. We have recently reported data suggesting direct cell-to-cell interactions leading to electron and material exchange between the two microbes in the syntrophy between Clostridium ljungdahlii and C. acetobutylicum Here, transmission electron microscopy and electron tomography demonstrated cell wall and membrane fusions between the two organisms, whereby C. ljungdahlii appears to invade C. acetobutylicum pole to pole. Correlative fluorescence transmission electron microscopy demonstrated large-scale exchange of proteins. Flow cytometry analysis captured the extent and dynamic persistence of these interactions. Dividing hybrid cells were identified containing stained proteins from both organisms, thus demonstrating persistence of cells with exchanged cellular components. Fluorescence microscopy and flow cytometry of one species with stained RNA and the other tagged with a fluorescent protein demonstrated extensive RNA exchange and identified hybrid cells, some of which continued to divide, while some were in an advanced C. acetobutylicum sporulation form. These data demonstrate that cell fusion enables large-scale cellular material exchange between the two organisms. Although unanticipated and never previously reported, these phenomena are likely widely distributed in nature, have profound implications for species evolution and the function of microbial communities, and could find utility in biotechnology. They may shed new light onto little-understood phenomena, such as antibiotic heteroresistance of pathogens, pathogen invasion of human tissues, and the evolutionary trajectory and persistence of unculturable bacteria.IMPORTANCE We report that two different bacterial organisms engage in heterologous cell fusion that leads to massive exchange of cellular material, including proteins and RNA, and the formation of persistent hybrid cells. The interspecies cell fusion observed here involves a syntrophic microbial system, but these heterologous cell fusions were observed even under nonstrict syntrophic conditions, leaving open the possibility that strict syntrophy may not be necessary for interspecies cell fusion and cellular material exchange. Formation of hybrid cells that contain proteins and RNA from both organisms is unexpected and unprecedented. Such fusion events are likely widely distributed in nature, but have gone undetected. The implications are profound and may shed light onto many unexplained phenomena in human health, natural environments, evolutionary biology, and biotechnology.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium acetobutylicum/metabolismo , Clostridium/metabolismo , Citoplasma/metabolismo , Interações Microbianas , RNA Bacteriano/metabolismo , Clostridium/ultraestrutura , Clostridium acetobutylicum/ultraestrutura , Microscopia Eletrônica de Transmissão
14.
Nucleic Acids Res ; 48(16): e96, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32716042

RESUMO

Small RNAs are non-coding RNAs that play important roles in the lives of both animals and plants. They are 21- to 24-nt in length and ∼10 nm in size. Their small size and high diversity have made it challenging to develop detection methods that have sufficient resolution and specificity to multiplex and quantify. We created a method, sRNA-PAINT, for the detection of small RNAs with 20 nm resolution by combining the super-resolution method, DNA-based points accumulation in nanoscale topography (DNA-PAINT), and the specificity of locked nucleic acid (LNA) probes for the in situ detection of multiple small RNAs. The method relies on designing probes to target small RNAs that combine DNA oligonucleotides (oligos) for PAINT with LNA-containing oligos for hybridization; therefore, we developed an online tool called 'Vetting & Analysis of RNA for in situ Hybridization probes' (VARNISH) for probe design. Our method utilizes advances in DNA-PAINT methodologies, including qPAINT for quantification, and Exchange-PAINT for multiplexing. We demonstrated these capabilities of sRNA-PAINT by detecting and quantifying small RNAs in different cell layers of early developmental stage maize anthers that are important for male sexual reproduction.


Assuntos
Flores/genética , Hibridização in Situ Fluorescente/métodos , Microscopia de Fluorescência/métodos , RNA de Plantas/genética , Pequeno RNA não Traduzido/genética , Zea mays/genética , Oligonucleotídeos/genética
15.
Methods Mol Biol ; 2166: 23-33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32710401

RESUMO

Single-molecule FISH (smFISH) has been widely used in animal tissue to localize and quantify RNAs with high specificity. This protocol describes an smFISH method optimized for highly autofluorescent plant tissue. It provides details on fixation buffers and protocols to protect the integrity of plant samples. We also provide smFISH hybridization conditions to detect plant RNA with ~50 fluorescently labeled DNA oligonucleotides. In addition, this protocol provides instructions on linear spectral unmixing of smFISH signal from background autofluorescence by confocal microscopy and a method to quantify the smFISH spots that reflect the copy number of target RNA.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Hibridização in Situ Fluorescente/métodos , Plantas/genética , RNA Mensageiro/genética , Imagem Individual de Molécula/métodos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Inclusão em Parafina/métodos , Plantas/metabolismo , RNA Mensageiro/metabolismo , Análise Espectral/instrumentação , Análise Espectral/métodos
16.
Plant Cell ; 32(6): 1790-1796, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32220850

RESUMO

The origin and early evolution of sex chromosomes have been hypothesized to involve the linkage of factors with antagonistic effects on male and female function. Garden asparagus (Asparagus officinalis) is an ideal species to investigate this hypothesis, as the X and Y chromosomes are cytologically homomorphic and evolved from an ancestral autosome pair in association with a shift from hermaphroditism to dioecy. Mutagenesis screens paired with single-molecule fluorescence in situ hybridization directly implicate Y-specific genes that respectively suppress female (pistil) development and are necessary for male (anther) development. Comparison of contiguous X and Y chromosome assemblies shows that hemizygosity underlies the loss of recombination between the genes suppressing female organogenesis (SUPPRESSOR OF FEMALE FUNCTION) and promoting male function (TAPETAL DEVELOPMENT AND FUNCTION1 [aspTDF1]). We also experimentally demonstrate the function of aspTDF1. These findings provide direct evidence that sex chromosomes can function through linkage of two sex determination genes.


Assuntos
Asparagus/genética , Cromossomos de Plantas/genética , Proteínas de Plantas/metabolismo , Hemizigoto , Mutagênese , Proteínas de Plantas/genética
17.
J R Soc Interface ; 16(160): 20190547, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31744419

RESUMO

Tendon's hierarchical structure allows for load transfer between its fibrillar elements at multiple length scales. Tendon microstructure is particularly important, because it includes the cells and their surrounding collagen fibrils, where mechanical interactions can have potentially important physiological and pathological contributions. However, the three-dimensional (3D) microstructure and the mechanisms of load transfer in that length scale are not known. It has been postulated that interfibrillar matrix shear or direct load transfer via the fusion/branching of small fibrils are responsible for load transfer, but the significance of these mechanisms is still unclear. Alternatively, the helical fibrils that occur at the microstructural scale in tendon may also mediate load transfer; however, these structures are not well studied due to the lack of a three-dimensional visualization of tendon microstructure. In this study, we used serial block-face scanning electron microscopy to investigate the 3D microstructure of fibrils in rat tail tendon. We found that tendon fibrils have a complex architecture with many helically wrapped fibrils. We studied the mechanical implications of these helical structures using finite-element modelling and found that frictional contact between helical fibrils can induce load transfer even in the absence of matrix bonding or fibril fusion/branching. This study is significant in that it provides a three-dimensional view of the tendon microstructure and suggests friction between helically wrapped fibrils as a mechanism for load transfer, which is an important aspect of tendon biomechanics.


Assuntos
Modelos Biológicos , Tendões/fisiologia , Animais , Masculino , Microscopia Eletrônica de Varredura , Ratos , Ratos Sprague-Dawley , Tendões/ultraestrutura , Suporte de Carga
18.
Front Cell Neurosci ; 13: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828290

RESUMO

The dopamine transporter (DAT) is a plasma membrane protein responsible for the uptake of released dopamine back to the presynaptic terminal and ending dopamine neurotransmission. The DAT is the molecular target for cocaine and amphetamine as well as a number of pathological conditions including autism spectrum disorders, attention-deficit hyperactivity disorder (ADHD), dopamine transporter deficiency syndrome (DTDS), and Parkinson's disease. The DAT uptake capacity is dependent on its level in the plasma membrane. In vitro studies show that DAT functional expression is regulated by a balance of endocytosis, recycling, and lysosomal degradation. However, recent reports suggest that DAT regulation by endocytosis in neurons is less significant than previously reported. Therefore, additional mechanisms appear to determine DAT steady-state level and functional expression in the neuronal plasma membrane. Here, we hypothesize that the ubiquitin-like protein small ubiquitin-like modifier 1 (SUMO1) increases the DAT steady-state level in the plasma membrane. In confocal microscopy, fluorescent resonance energy transfer (FRET), and Western blot analyses, we demonstrate that DAT is associated with SUMO1 in the rat dopaminergic N27 and DAT overexpressing Human Embryonic Kidney cells (HEK)-293 cells. The overexpression of SUMO1 and the Ubc9 SUMO-conjugase induces DAT SUMOylation, reduces DAT ubiquitination and degradation, enhancing DAT steady-state level. In addition, the Ubc9 knock-down by interference RNA (RNAi) increases DAT degradation and reduces DAT steady-state level. Remarkably, the Ubc9-mediated SUMOylation increases the expression of DAT in the plasma membrane and dopamine uptake capacity. Our results strongly suggest that SUMOylation is a novel mechanism that plays a central role in regulating DAT proteostasis, dopamine uptake, and dopamine signaling in neurons. For that reason, the SUMO pathway including SUMO1, SUMO2, Ubc9, and DAT SUMOylation, can be critical therapeutic targets in regulating DAT stability and dopamine clearance in health and pathological states.

19.
J Biol Chem ; 294(16): 6405-6415, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30733336

RESUMO

Upon phagocytosis into macrophages, the intracellular bacterial pathogen Legionella pneumophila secretes effector proteins that manipulate host cell components, enabling it to evade lysosomal degradation. However, the bacterial proteins involved in this evasion are incompletely characterized. Here we show that the L. pneumophila effector protein RavD targets host membrane compartments and contributes to the molecular mechanism the pathogen uses to prevent encounters with lysosomes. Protein-lipid binding assays revealed that RavD selectively binds phosphatidylinositol-3-phosphate (PI(3)P) in vitro We further determined that a C-terminal RavD region mediates the interaction with PI(3)P and that this interaction requires Arg-292. In transiently transfected mammalian cells, mCherry-RavD colocalized with the early endosome marker EGFP-Rab5 as well as the PI(3)P biosensor EGFP-2×FYVE. However, treatment with the phosphoinositide 3-kinase inhibitor wortmannin did not disrupt localization of mCherry-RavD to endosomal compartments, suggesting that RavD's interaction with PI(3)P is not necessary to anchor RavD to endosomal membranes. Using superresolution and immunogold transmission EM, we observed that, upon translocation into macrophages, RavD was retained onto the Legionella-containing vacuole and was also present on small vesicles adjacent to the vacuole. We also report that despite no detectable effects on intracellular growth of L. pneumophila within macrophages or amebae, the lack of RavD significantly increased the number of vacuoles that accumulate the late endosome/lysosome marker LAMP-1 during macrophage infection. Together, our findings suggest that, although not required for intracellular replication of L. pneumophila, RavD is a part of the molecular mechanism that steers the Legionella-containing vacuole away from endolysosomal maturation pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Endossomos/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Vacúolos/metabolismo , Proteínas de Bactérias/genética , Endossomos/genética , Endossomos/ultraestrutura , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Doença dos Legionários/genética , Doença dos Legionários/patologia , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/genética , Lisossomos/ultraestrutura , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/antagonistas & inibidores , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Células U937 , Vacúolos/genética , Vacúolos/microbiologia , Vacúolos/ultraestrutura , Wortmanina/farmacologia , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
20.
Plant J ; 98(2): 359-369, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30577085

RESUMO

Localization of mRNA and small RNAs (sRNAs) is important for understanding their function. Fluorescent in situ hybridization (FISH) has been used extensively in animal systems to study the localization and expression of sRNAs. However, current methods for fluorescent in situ detection of sRNA in plant tissues are less developed. Here we report a protocol (sRNA-FISH) for efficient fluorescent detection of sRNAs in plants. This protocol is suitable for application in diverse plant species and tissue types. The use of locked nucleic acid probes and antibodies conjugated with different fluorophores allows the detection of two sRNAs in the same sample. Using this method, we have successfully detected the co-localization of miR2275 and a 24-nucleotide phased small interfering RNA in maize anther tapetal and archesporial cells. We describe how to overcome the common problem of the wide range of autofluorescence in embedded plant tissue using linear spectral unmixing on a laser scanning confocal microscope. For highly autofluorescent samples, we show that multi-photon fluorescence excitation microscopy can be used to separate the target sRNA-FISH signal from background autofluorescence. In contrast to colorimetric in situ hybridization, sRNA-FISH signals can be imaged using super-resolution microscopy to examine the subcellular localization of sRNAs. We detected maize miR2275 by super-resolution structured illumination microscopy and direct stochastic optical reconstruction microscopy. In this study, we describe how we overcame the challenges of adapting FISH for imaging in plant tissue and provide a step-by-step sRNA-FISH protocol for studying sRNAs at the cellular and even subcellular level.


Assuntos
Hibridização in Situ Fluorescente/métodos , RNA Interferente Pequeno/isolamento & purificação , Zea mays/genética , Imunofluorescência , Litchi/genética , MicroRNAs , Sondas de Oligonucleotídeos , Oryza/genética , RNA Mensageiro , RNA Interferente Pequeno/genética , Pequeno RNA não Traduzido/genética , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA