Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1157299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396392

RESUMO

It is shown that bacteria use yeast as a niche for survival in stressful conditions, therefore yeasts may act as temporary or permanent bacterial reservoirs. Endobacteria colonise the fungal vacuole of various osmotolerant yeasts which survive and multiply in sugar-rich sources such as plant nectars. Nectar-associated yeasts are present even in the digestive system of insects and often establish mutualistic symbioses with both hosts. Research on insect microbial symbioses is increasing but bacterial-fungal interactions are yet unexplored. Here, we have focused on the endobacteria of Wickerhamomyces anomalus (formerly Pichia anomala and Candida pelliculosa), an osmotolerant yeast associated with sugar sources and the insect gut. Symbiotic strains of W. anomalus influence larval development and contribute digestive processes in adults, in addition to exerting wide antimicrobial properties for host defence in diverse insects including mosquitoes. Antiplasmodial effects of W. anomalus have been shown in the gut of the female malaria vector mosquito Anopheles stephensi. This discovery highlights the potential of utilizing yeast as a promising tool for symbiotic control of mosquito-borne diseases. In the present study, we have carried out a large Next Generation Sequencing (NGS) metagenomics analysis including W. anomalus strains associated with vector mosquitoes Anopheles, Aedes and Culex, which has highlighted wide and heterogeneous EB communities in yeast. Furthermore, we have disclosed a Matryoshka-like association in the gut of A stephensi that comprises different EB in the strain of W. anomalus WaF17.12. Our investigations started with the localization of fast-moving bacteria-like bodies within the yeast vacuole of WaF17.12. Additional microscopy analyses have validated the presence of alive intravacuolar bacteria and 16S rDNA libraries from WaF17.12 have identified a few bacterial targets. Some of these EB have been isolated and tested for lytic properties and capability to re-infect the yeast cell. Moreover, a selective competence to enter yeast cell has been shown comparing different bacteria. We suggested possible tripartite interactions among EB, W. anomalus and the host, opening new knowledge on the vector biology.

2.
Pathogens ; 9(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429180

RESUMO

Mosquitoes can transmit many infectious diseases, such as malaria, dengue, Zika, yellow fever, and lymphatic filariasis. Current mosquito control strategies are failing to reduce the severity of outbreaks that still cause high human morbidity and mortality worldwide. Great expectations have been placed on genetic control methods. Among other methods, genetic modification of the bacteria colonizing different mosquito species and expressing anti-pathogen molecules may represent an innovative tool to combat mosquito-borne diseases. Nevertheless, this emerging approach, known as paratransgenesis, requires a detailed understanding of the mosquito microbiota and an accurate characterization of selected bacteria candidates. The acetic acid bacteria Asaia is a promising candidate for paratransgenic approaches. We have previously reported that Asaia symbionts play a beneficial role in the normal development of Anopheles mosquito larvae, but no study has yet investigated the role(s) of Asaia in adult mosquito biology. Here we report evidence on how treatment with a highly specific anti-Asaia monoclonal antibody impacts the survival and physiology of adult Anopheles stephensi mosquitoes. Our findings offer useful insight on the role of Asaia in several physiological systems of adult mosquitoes, where the influence differs between males and females.

3.
Vector Borne Zoonotic Dis ; 19(5): 328-332, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30418103

RESUMO

Tick-borne diseases are an increasing problem for the community. Ticks harbor a complex microbial population acquired while feeding on a variety of animals. Profiling the bacterial population by 16S rDNA amplification and denaturing gradient gel electrophoresis enables detection of the broad spectrum of bacteria that settles in the ticks. This study identified known and unknown tick-infecting bacteria in samples from Italy. Seven adult ticks from different hosts and origins were analyzed: two Rhipicephalus sanguineus ticks from dogs (Lombardia), two Rhipicephalus bursa ticks from bovines (Lazio), and three Ixodes ricinus ticks from humans (Marche). The major result was the first report of the zoonotic agent Streptococcus equi in ticks. S. equi is a species complex of highly contagious pathogens. Subsequent to S. equi detection in a R. bursa tick removed from a bovine of Lazio in 2012, we studied 95 R. bursa samples collected from 3 bovines, 3 ponies, and 1 sheep grazing in the same area in 2012 and from 6 ponies grazing there in 2017. The results of a specific PCR assay indicated a not sporadic occurrence of S. equi in ticks. This finding provides a basis for assessing the potential of ticks to harbor and disperse S. equi.


Assuntos
Rhipicephalus/microbiologia , Streptococcus equi/isolamento & purificação , Infestações por Carrapato/veterinária , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/parasitologia , Cavalos , Itália/epidemiologia , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/parasitologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia
4.
G3 (Bethesda) ; 8(3): 755-759, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29311113

RESUMO

Yeasts of the Meyerozyma guilliermondii species complex are widespread in nature and can be isolated from a variety of sources, from the environment to arthropods to hospital patients. To date, the species complex comprises the thoroughly studied and versatile M. guilliermondii, the hard to distinguish M. caribbica, and Candida carpophila Here we report the whole genome sequencing and de novo assembly of four M. caribbica isolates, identified with the most recent molecular techniques, derived from four Diptera species. The four novel assemblies present reduced fragmentation and comparable metrics (genome size, gene content) to the available genomes belonging to the species complex. We performed a phylogenomic analysis comprising all known members of the species complex, to investigate evolutionary relationships within this clade. Our results show a compact phylogenetic structure for the complex and indicate the presence of a sizable core set of genes. Furthermore, M. caribbica, despite a broad literature on the difficulties of discerning it from M. guilliermondii, seems to be more closely related to C. carpophila Finally, we believe that there is evidence for considering these four genomes to be the first published for the species M. caribbica Raw reads and assembled contigs have been made public to further the study of these organisms.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Genoma Fúngico , Genômica , Ascomicetos/isolamento & purificação , Biologia Computacional/métodos , Genômica/métodos , Anotação de Sequência Molecular , Filogenia
5.
Environ Microbiol Rep ; 9(5): 642-648, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28714286

RESUMO

There is still a lack of studies on fungal microbiota in mosquitoes, compared with the number available on bacterial microbiota. This study reports the identification of yeasts of clinical significance in laboratory mosquito species: Anopheles gambiae, Anopheles stephensi, Culex quinquefasciatus, Aedes albopictus and Aedes aegypti. Among the yeasts isolated, they focused on the opportunistic pathogen Candida parapsilosis, since there is a need to better understand breakthrough candidaemia with resistance to the usual antifungals, which requires careful consideration in the broad-spectrum therapy, as documented in many clinical reports. C. parapsilosis occurs widely and has been isolated from diverse sources, including insects, which may contribute to its dissemination. In this study, it was isolated from the gut of An. gambiae and its presence in developmental stages and organs of different mosquito species was studied. Our results indicated that there was a stable association between C. parapsilosis and reared mosquitoes during the entire life cycle, and in adult male and female gut and gonads. A wide occurrence of C. parapsilosis was also documented in several populations of wild mosquitoes. Based on these findings, it can be said that mosquitoes might participate in the spreading of this opportunistic pathogen, not only as a carrier.


Assuntos
Culicidae/microbiologia , Meio Ambiente , Interações Hospedeiro-Patógeno , Leveduras , Animais , Feminino , Masculino , Metagenoma , Metagenômica/métodos , Microbiota , Reação em Cadeia da Polimerase , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
6.
Parasit Vectors ; 9: 140, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26965746

RESUMO

BACKGROUND: Malaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments. METHODS: Large cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaia (gfp)), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaia (gfp) was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis. RESULTS: Here we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated. CONCLUSIONS: Our results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective for its field application with suitable effector molecules.


Assuntos
Acetobacteraceae/crescimento & desenvolvimento , Acetobacteraceae/genética , Anopheles/microbiologia , Anopheles/fisiologia , Técnicas de Transferência de Genes , Insetos Vetores , Acetobacteraceae/metabolismo , Animais , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Microscopia de Fluorescência , Biologia Molecular , Projetos Piloto , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Coloração e Rotulagem
7.
Malar J ; 15: 21, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26754943

RESUMO

BACKGROUND: Malaria control strategies are focusing on new approaches, such as the symbiotic control, which consists in the use of microbial symbionts to prevent parasite development in the mosquito gut and to block the transmission of the infection to humans. Several microbes, bacteria and fungi, have been proposed for malaria or other mosquito-borne diseases control strategies. Among these, the yeast Wickerhamomyces anomalus has been recently isolated from the gut of Anopheles mosquitoes, where it releases a natural antimicrobial toxin. Interestingly, many environmental strains of W. anomalus exert a wide anti-bacterial/fungal activity and some of these 'killer' yeasts are already used in industrial applications as food and feed bio-preservation agents. Since a few studies showed that W. anomalus killer strains have antimicrobial effects also against protozoan parasites, the possible anti-plasmodial activity of the yeast was investigated. METHODS: A yeast killer toxin (KT), purified through combined chromatographic techniques from a W. anomalus strain isolated from the malaria vector Anopheles stephensi, was tested as an effector molecule to target the sporogonic stages of the rodent malaria parasite Plasmodium berghei, in vitro. Giemsa staining was used to detect morphological damages in zygotes/ookinetes after treatment with the KT. Furthermore, the possible mechanism of action of the KT was investigated pre-incubating the protein with castanospermine, an inhibitor of ß-glucanase activity. RESULTS: A strong anti-plasmodial effect was observed when the P. berghei sporogonic stages were treated with KT, obtaining an inhibition percentage up to around 90%. Microscopy analysis revealed several ookinete alterations at morphological and structural level, suggesting the direct implication of the KT-enzymatic activity. Moreover, evidences of the reduction of KT activity upon treatment with castanospermine propose a ß-glucanase-mediated activity. CONCLUSION: The results showed the in vitro killing efficacy of a protein produced by a mosquito strain of W. anomalus against malaria parasites. Further studies are required to test the KT activity against the sporogonic stages in vivo, nevertheless this work opens new perspectives for the possible use of killer strains in innovative strategies to impede the development of the malaria parasite in mosquito vectors by the means of microbial symbionts.


Assuntos
Anopheles/microbiologia , Malária/parasitologia , Saccharomycetales/metabolismo , Saccharomycetales/fisiologia , Toxinas Biológicas/metabolismo , Toxinas Biológicas/fisiologia , Animais , Camundongos Endogâmicos BALB C , Plasmodium berghei/patogenicidade , Simbiose
8.
New Microbiol ; 38(4): 577-81, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26485017

RESUMO

The yeast Wickerhamomyces anomalus has been proposed for many biotechnological applications in the food industry. However, a number of opportunistic pathogenic strains have been reported as causative agents of nosocomial fungemia. Recognition of potentially pathogenic isolates is an important challenge for the future commercialization of this yeast. The isolation of W. anomalus from different matrices and, recently, from mosquitoes, requires further investigations into its circulation in humans. Here we present a qPCR protocol for the detection of W. anomalus in human blood samples and the results of a screening of 525 donors, including different classes of patients and healthy people.


Assuntos
Sangue/microbiologia , Micoses/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Saccharomycetales/isolamento & purificação , Humanos , Micoses/sangue , Saccharomycetales/classificação , Saccharomycetales/genética
9.
Parasit Vectors ; 8: 278, 2015 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25981386

RESUMO

BACKGROUND: Wolbachia is a group of intracellular maternally inherited bacteria infecting a high number of arthropod species. Their presence in different mosquito species has been largely described, but Aedes aegypti, the main vector of Dengue virus, has never been found naturally infected by Wolbachia. Similarly, malaria vectors and other anophelines are normally negative to Wolbachia, with the exception of an African population where these bacteria have recently been detected. Asaia is an acetic acid bacterium stably associated with several mosquito species, found as a dominant microorganism of the mosquito microbiota. Asaia has been described in gut, salivary glands and in reproductive organs of adult mosquitoes in Ae. aegypti and in anophelines. It has recently been shown that Asaia may impede vertical transmission of Wolbachia in Anopheles mosquitoes. Here we present an experimental study, aimed at determining whether there is a negative interference between Asaia and Wolbachia, for the gonad niche in mosquitoes. METHODS: Different methods (PCR and qPCR, monoclonal antibody staining and FISH) have been used to address the question of the co-localization and the relative presence/abundance of the two symbionts. PCR and qPCR were performed to qualitatively and quantitatively verify the distribution of Asaia and Wolbachia in different mosquito species/organs. Monoclonal antibody staining and FISH were performed to localize the symbionts in different mosquito species. RESULTS: Here we provide evidence that, in Anopheles and in other mosquitoes, there is a reciprocal negative interference between Asaia and Wolbachia symbionts, in terms of the colonization of the gonads. In particular, we have shown that in some mosquito species the presence of one of the symbionts prevented the establishment of the second, while in other systems the symbionts were co-localized, although at reduced densities. CONCLUSIONS: A mutual exclusion or a competition between Asaia and Wolbachia may contribute to explain the inability of Wolbachia to colonize the female reproductive organs of anophelines, inhibiting its vertical transmission and explaining the absence of Wolbachia infection in Ae. aegypti and in the majority of natural populations of Anopheles mosquitoes.


Assuntos
Aedes/microbiologia , Alphaproteobacteria/isolamento & purificação , Anopheles/microbiologia , Gônadas/microbiologia , Wolbachia/isolamento & purificação , Animais , Feminino , Trato Gastrointestinal/microbiologia , Masculino
10.
J Steroid Biochem Mol Biol ; 152: 1-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25869557

RESUMO

Liver X receptor is a ligand-activated transcription factor, which is mainly involved in cholesterol homeostasis, bile acid and triglycerides metabolism, and, as recently discovered, in the glucose metabolism by direct regulation of liver glucokinase. Its modulation by exogenous factors, such as drugs, industrial by-products, and chemicals is documented. Owing to the abundance of these synthetic molecules in the environment, and to the established target role of this receptor, a number of representative compounds of phthalate, organophosphate and fibrate classes were tested as ligands/modulators of human liver X receptor, using an integrated approach, combining an in silico molecular docking technique with an optical SPR biosensor binding study. The compounds of interest were predicted and proved to target the oxysterols-binding site of human LXRα with measurable binding kinetic constants and with affinities ranging between 4.3 × 10(-7) and 4.3 × 10(-8)M. Additionally, non-cytotoxic concentration of these chemicals induced relevant changes in the LXRα gene expression levels and other target genes (SREBP-1c and LGK) in human liver hepatocellular carcinoma cell line (HepG2), as demonstrated by q-RT-PCR.


Assuntos
Poluentes Ambientais/metabolismo , Ácidos Fíbricos/metabolismo , Organofosfatos/metabolismo , Receptores Nucleares Órfãos/metabolismo , Ácidos Ftálicos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Poluentes Ambientais/farmacologia , Ácidos Fíbricos/farmacologia , Células Hep G2 , Humanos , Receptores X do Fígado , Simulação de Acoplamento Molecular , Organofosfatos/farmacologia , Receptores Nucleares Órfãos/biossíntese , Receptores Nucleares Órfãos/genética , Ácidos Ftálicos/farmacologia , Ligação Proteica , RNA Mensageiro/biossíntese , Receptores de Esteroides/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
11.
Parasit Vectors ; 6(1): 182, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23777746

RESUMO

BACKGROUND: Malaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control.To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach. METHODS: Quantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy.The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains.Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains. RESULTS: Using quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite.The 'in vitro' immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target.Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands. CONCLUSIONS: We have provided important information about the relationship of Asaia with both Plasmodium and Anopheles. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the residing Asaia population that seems to benefit from this condition. Second, Asaia can act as an immune-modulator activating antimicrobial peptide expression and seems to be adapted to the host immune response. Last, the co-localization of Asaia and Plasmodium highlights the possibility of reducing vectorial competence using bacterial recombinant strains capable of releasing anti-parasite molecules.


Assuntos
Acetobacteraceae/fisiologia , Anopheles/microbiologia , Anopheles/parasitologia , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Malária/parasitologia , Plasmodium/fisiologia , Simbiose , Acetobacteraceae/genética , Animais , Anopheles/imunologia , Anopheles/fisiologia , Feminino , Humanos , Insetos Vetores/imunologia , Insetos Vetores/fisiologia , Larva/imunologia , Larva/microbiologia , Larva/fisiologia , Malária/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C
12.
Curr Opin Microbiol ; 15(3): 278-84, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22465193

RESUMO

To date around 3500 different species of mosquito have been described, several tens of which are vectors of pathogens of remarkable interest in public health. Mosquitoes are present all around the world showing a great ability to adapt to very different types of habitats where they play relevant ecological roles. It is very likely that components of the mosquito microbiota have given the mosquito a great capacity to adapt to different environments. Current advances in understanding the mosquito-microbiota relationships may have a great impact in a better understanding of some traits of mosquito biology and in the development of innovative mosquito-borne disease-control strategies aimed to reduce mosquito vectorial capacity and/or inhibiting pathogen transmission.


Assuntos
Culicidae/microbiologia , Culicidae/fisiologia , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Animais , Biotecnologia , Interações Hospedeiro-Patógeno , Metagenoma/fisiologia , Wolbachia/fisiologia , Leveduras/fisiologia
13.
Environ Microbiol ; 13(4): 911-21, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21208355

RESUMO

While symbiosis between bacteria and insects has been thoroughly investigated in the last two decades, investments on the study of yeasts associated with insects have been limited. Insect-associated yeasts are placed on different branches of the phylogenetic tree of fungi, indicating that these associations evolved independently on several occasions. Isolation of yeasts is frequently reported from insect habitats, and in some cases yeasts have been detected in the insect gut and in other organs/tissues. Here we show that the yeast Wickerhamomyces anomalus, previously known as Pichia anomala, is stably associated with the mosquito Anopheles stephensi, a main vector of malaria in Asia. Wickerhamomyces anomalus colonized pre-adult stages (larvae L(1)-L(4) and pupae) and adults of different sex and age and could be isolated in pure culture. By a combination of transmission electron microscopy and fluorescent in situ hybridization techniques, W. anomalus was shown to localize in the midgut and in both the male and female reproductive systems, suggesting multiple transmission patterns.


Assuntos
Anopheles/microbiologia , Sistema Digestório/microbiologia , Genitália Feminina/microbiologia , Genitália Masculina/microbiologia , Pichia/crescimento & desenvolvimento , Animais , Ásia , DNA Fúngico/genética , Feminino , Hibridização in Situ Fluorescente , Larva/microbiologia , Masculino , Microscopia Eletrônica de Transmissão , Pichia/genética , Pichia/isolamento & purificação , Reação em Cadeia da Polimerase , Simbiose
14.
Antonie Van Leeuwenhoek ; 99(1): 43-50, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21113816

RESUMO

The genetic manipulation of the microbial community associated with hematophagus insects is particularly relevant for public health applications. Within mosquito populations, this relationship has been overlooked until recently. New advances in molecular biotechnology propose the genetic manipulation of mosquito symbionts to prevent the transmission of pathogens to humans by interfering with the obligatory life cycle stages within the insect through the use of effector molecules. This approach, defined as 'paratransgenesis', has opened the way for the investigation and characterization of microbes residing in the mosquito body, particularly those localised within the gut. Some interesting bacteria have been identified as candidates for genetic modification, however, endosymbiotic yeasts remain largely unexplored with little information on the symbiotic relationships to date. Here we review the recent report of symbiotic relationship between Wickerhamomyces anomalus (Pichia anomala) and several mosquito vector species as promising methods to implement control of mosquito-borne diseases.


Assuntos
Culicidae/microbiologia , Controle de Mosquitos/métodos , Saccharomycetales/fisiologia , Simbiose , Animais , Saccharomycetales/isolamento & purificação
15.
Microb Ecol ; 60(3): 644-54, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20571792

RESUMO

The symbiotic relationship between Asaia, an α-proteobacterium belonging to the family Acetobacteriaceae, and mosquitoes has been studied mainly in the Asian malaria vector Anopheles stephensi. Thus, we have investigated the nature of the association between Asaia and the major Afro-tropical malaria vector Anopheles gambiae. We have isolated Asaia from different wild and laboratory reared colonies of A. gambiae, and it was detected by PCR in all the developmental stages of the mosquito and in all the specimens analyzed. Additionally, we have shown that it localizes in the midgut, salivary glands and reproductive organs. Using recombinant strains of Asaia expressing fluorescent proteins, we have demonstrated the ability of the bacterium to colonize A. gambiae mosquitoes with a pattern similar to that described for A. stephensi. Finally, fluorescent in situ hybridization on the reproductive tract of females of A. gambiae showed a concentration of Asaia at the very periphery of the eggs, suggesting that transmission of Asaia from mother to offspring is likely mediated by a mechanism of egg-smearing. We suggest that Asaia has potential for use in the paratransgenic control of malaria transmitted by A. gambiae.


Assuntos
Acetobacteraceae/fisiologia , Anopheles/microbiologia , Simbiose , Acetobacteraceae/genética , Animais , Anopheles/crescimento & desenvolvimento , DNA Bacteriano/genética , Feminino , Organismos Geneticamente Modificados , Ovário/microbiologia , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA