Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616959

RESUMO

Global climate change and exponential population growth pose a challenge to agricultural outputs. In this scenario, novel techniques have been proposed to improve plant growth and increase crop yields. Wearable sensors are emerging as promising tools for the non-invasive monitoring of plant physiological and microclimate parameters. Features of plant wearables, such as easy anchorage to different organs, compliance with natural surfaces, high flexibility, and biocompatibility, allow for the detection of growth without impacting the plant functions. This work proposed two wearable sensors based on fiber Bragg gratings (FBGs) within silicone matrices. The use of FBGs is motivated by their high sensitivity, multiplexing capacities, and chemical inertia. Firstly, we focused on the design and the fabrication of two plant wearables with different matrix shapes tailored to specific plant organs (i.e., tobacco stem and melon fruit). Then, we described the sensors' metrological properties to investigate the sensitivity to strain and the influence of environmental factors, such as temperature and humidity, on the sensors' performance. Finally, we performed experimental tests to preliminary assess the capability of the proposed sensors to monitor dimensional changes of plants in both laboratory and open field settings. The promising results will foster key actions to improve the use of this innovative technology in smart agriculture applications for increasing crop products quality, agricultural efficiency, and profits.


Assuntos
Tecnologia de Fibra Óptica , Dispositivos Eletrônicos Vestíveis , Estudos de Viabilidade , Desenvolvimento Vegetal , Agricultura
2.
Sensors (Basel) ; 20(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963696

RESUMO

Musculoskeletal disorders are the most common form of occupational ill-health. Neck pain is one of the most prevalent musculoskeletal disorders experienced by computer workers. Wrong postural habits and non-compliance of the workstation to ergonomics guidelines are the leading causes of neck pain. These factors may also alter respiratory functions. Health and safety interventions can reduce neck pain and, more generally, the symptoms of musculoskeletal disorders and reduce the consequent economic burden. In this work, a multi-parametric wearable system based on two fiber Bragg grating sensors is proposed for monitoring neck movements and breathing activity of computer workers. The sensing elements were positioned on the neck, in the frontal and sagittal planes, to monitor: (i) flexion-extension and axial rotation repetitions, and (ii) respiratory frequency. In this pilot study, five volunteers were enrolled and performed five repetitions of both flexion-extension and axial rotation, and ten breaths of both quite breathing and tachypnea. Results showed the good performances of the proposed system in monitoring the aforementioned parameters when compared to optical reference systems. The wearable system is able to well-match the trend in time of the neck movements (both flexion-extension and axial rotation) and to estimate mean and breath-by-breath respiratory frequency values with percentage errors ≤6.09% and ≤1.90%, during quiet breathing and tachypnea, respectively.


Assuntos
Monitorização Fisiológica/métodos , Pescoço/fisiologia , Taxa Respiratória/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Computadores , Ergonomia , Feminino , Humanos , Masculino , Monitorização Fisiológica/instrumentação , Projetos Piloto , Processamento de Sinais Assistido por Computador , Adulto Jovem
3.
J Biophotonics ; 11(5): e201700263, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29297202

RESUMO

The use of wearable systems for monitoring vital parameters has gained wide popularity in several medical fields. The focus of the present study is the experimental assessment of a smart textile based on 12 fiber Bragg grating sensors for breathing monitoring and thoraco-abdominal motion pattern analysis. The feasibility of the smart textile for monitoring several temporal respiratory parameters (ie, breath-by-breath respiratory period, breathing frequency, duration of inspiratory and expiratory phases), volume variations of the whole chest wall and of its compartments is performed on 8 healthy male volunteers. Values gathered by the textile are compared to the data obtained by a motion analysis system, used as the reference instrument. Good agreement between the 2 systems on both respiratory period (bias of 0.01 seconds), breathing frequency (bias of -0.02 breaths/min) and tidal volume (bias of 0.09 L) values is demonstrated. Smart textile shows good performance in the monitoring of thoraco-abdominal pattern and its variation, as well.


Assuntos
Abdome/fisiologia , Monitorização Fisiológica/instrumentação , Movimento , Respiração , Têxteis , Tórax/fisiologia , Adulto , Humanos , Adulto Jovem
4.
J Biomed Opt ; 22(9): 1-9, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28914008

RESUMO

The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment.


Assuntos
Tecnologia de Fibra Óptica , Terapia a Laser , Fígado/cirurgia , Temperatura , Animais , Hipertermia Induzida , Suínos
5.
Sensors (Basel) ; 17(4)2017 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-28368339

RESUMO

During mechanical ventilation, the humidification of the dry air delivered by the mechanical ventilator is recommended. Among several solutions, heated wire humidifiers (HWHs) have gained large acceptance to be used in this field. The aim of this work is to fabricate a measuring system based on fiber Bragg grating (FBG) for the simultaneous monitoring of gas relative humidity (RH) and temperature, intended to be used for providing feedback to the HWHs' control. This solution can be implemented using an array of two FBGs having a different center wavelength. Regarding RH monitoring, three sensors have been fabricated by coating an FBG with two different moisture-sensitive and biocompatible materials: the first two sensors were fabricated by coating the grating with a 3 mm × 3 mm layer of agar and agarose; to investigate the influence of the coating thickness to the sensor response, a third sensor was developed with a 5 mm × 5 mm layer of agar. The sensors have been assessed in a wide range of RH (up to 95%) during both an ascending and a subsequent descending phase. Only the response of the 3 mm × 3 mm-coated sensors were fast enough to follow the RH changes, showing a mean sensitivity of about 0.14 nm/% (agar-coated) and 0.12 nm/% (agarose-coated). The hysteresis error was about <10% in the two sensors. The contribution of temperature changes on these RH sensors was negligible. The temperature measurement was performed by a commercial FBG insensitive to RH changes. The small size of these FBG-based sensors, the use of biocompatible polymers, and the possibility to measure both temperature and RH by using the same fiber optic embedding an array of two FBGs make intriguing the use of this solution for application in the control of HWHs.

6.
Biosensors (Basel) ; 5(3): 602-15, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26389961

RESUMO

Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT). FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR), duration of inspiratory (TI) and expiratory (TE) phases, as well as left and right UT volumes, were assessed on four healthy volunteers. The comparison of results obtained by the proposed system and an optoelectronic plethysmography highlights the high accuracy in the estimation of TR, TI, and TE: Bland-Altman analysis shows mean of difference values lower than 0.045 s, 0.33 s, and 0.35 s for TR, TI, and TE, respectively. The mean difference of UT volumes between the two systems is about 8.3%. The promising results foster further development of the system to allow routine use during MR examinations.Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT). FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR), duration of inspiratory (TI) and expiratory (TE) phases, as well as left and right UT volumes, were assessed on four healthy volunteers. The comparison of results obtained by the proposed system and an optoelectronic plethysmography highlights the high accuracy in the estimation of TR, TI, and TE: Bland-Altman analysis shows mean of difference values lower than 0.045 s, 0.33 s, and 0.35 s for TR, TI, and TE, respectively. The mean difference of UT volumes between the two systems is about 8.3%. The promising results foster further development of the system to allow routine use during MR examinations.


Assuntos
Técnicas Biossensoriais , Tecnologia de Fibra Óptica , Monitorização Fisiológica/métodos , Ventilação Pulmonar , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Humanos , Monitorização Fisiológica/instrumentação
7.
Lasers Med Sci ; 29(2): 607-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23780709

RESUMO

Tissue temperature distribution plays a crucial role in the outcome of laser-induced thermotherapy (LITT), a technique employed for neoplasias removal. Since recent studies proposed LITT for pancreatic tumors treatment, assessment of temperature and of its effects around the laser applicator could be useful to define optimal laser settings. The aims of this work are temperature monitoring and measurement of ablated tissue volume in an ex vivo porcine pancreas undergoing double-applicator LITT. A three-dimensional numerical model is implemented to predict temperature rise and volumes of ablated tissue in treated pancreas. Experiments are performed to validate the model, with two modalities: (1) 12-fiber Bragg grating sensors are adopted to monitor the heating and cooling during LITT at several distances from the applicators tip, and (2) 1.5-T MR imaging is used to estimate the ablated volume. Experimental data agree with theoretical ones: at 2 mm from both applicators tips, the maximum temperature increase is approximately 60 °C downward from the tips, while it increases of about 40 °C and 30 °C, respectively, at the level and upward from the tips. This behavior occurs also at other distances, proving that the tissue downward from the tip is mostly heated. Furthermore, the estimated volume with MRI agrees with theoretical one (i.d., 0.91 ± 0.09 vs. 0.95 cm(3)). The encouraging results indicate that the model could be a suitable tool to choose the optimal laser settings, in order to control the volume of ablated tissue.


Assuntos
Hipertermia Induzida/instrumentação , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética , Pâncreas/fisiologia , Pâncreas/cirurgia , Animais , Desenho de Equipamento , Terapia a Laser , Lasers de Estado Sólido/uso terapêutico , Modelos Teóricos , Suínos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA