Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 14(1): 121, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175966

RESUMO

BACKGROUND: Recent evidence highlights the epidemiological value of blood DNA methylation (DNAm) as surrogate biomarker for exposure to risk factors for non-communicable diseases (NCD). DNAm surrogate of exposures predicts diseases and longevity better than self-reported or measured exposures in many cases. Consequently, disease prediction models based on blood DNAm surrogates may outperform current state-of-the-art prediction models. This study aims to develop novel DNAm surrogates for cardiovascular diseases (CVD) risk factors and develop a composite biomarker predictive of CVD risk. We compared the prediction performance of our newly developed risk score with the state-of-the-art DNAm risk scores for cardiovascular diseases, the 'next-generation' epigenetic clock DNAmGrimAge, and the prediction model based on traditional risk factors SCORE2. RESULTS: Using data from the EPIC Italy cohort, we derived novel DNAm surrogates for BMI, blood pressure, fasting glucose and insulin, cholesterol, triglycerides, and coagulation biomarkers. We validated them in four independent data sets from Europe and the USA. Further, we derived a DNAmCVDscore predictive of the time-to-CVD event as a combination of several DNAm surrogates. ROC curve analyses show that DNAmCVDscore outperforms previously developed DNAm scores for CVD risk and SCORE2 for short-term CVD risk. Interestingly, the performance of DNAmGrimAge and DNAmCVDscore was comparable (slightly lower for DNAmGrimAge, although the differences were not statistically significant). CONCLUSIONS: We described novel DNAm surrogates for CVD risk factors useful for future molecular epidemiology research, and we described a blood DNAm-based composite biomarker, DNAmCVDscore, predictive of short-term cardiovascular events. Our results highlight the usefulness of DNAm surrogate biomarkers of risk factors in epigenetic epidemiology to identify high-risk populations. In addition, we provide further evidence on the effectiveness of prediction models based on DNAm surrogates and discuss methodological aspects for further improvements. Finally, our results encourage testing this approach for other NCD diseases by training and developing DNAm surrogates for disease-specific risk factors and exposures.


Assuntos
Doenças Cardiovasculares , Insulinas , Doenças não Transmissíveis , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Metilação de DNA , Epigênese Genética , Marcadores Genéticos , Glucose , Humanos , Triglicerídeos
2.
Anal Chim Acta ; 1153: 338245, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33714445

RESUMO

Classification of high-dimensional spectroscopic data is a common task in analytical chemistry. Well-established procedures like support vector machines (SVMs) and partial least squares discriminant analysis (PLS-DA) are the most common methods for tackling this supervised learning problem. Nonetheless, interpretation of these models remains sometimes difficult, and solutions based on feature selection are often adopted as they lead to the automatic identification of the most informative wavelengths. Unfortunately, for some delicate applications like food authenticity, mislabeled and adulterated spectra occur both in the calibration and/or validation sets, with dramatic effects on the model development, its prediction accuracy and robustness. Motivated by these issues, the present paper proposes a robust model-based method that simultaneously performs variable selection, outliers and label noise detection. We demonstrate the effectiveness of our proposal in dealing with three agri-food spectroscopic studies, where several forms of perturbations are considered. Our approach succeeds in diminishing problem complexity, identifying anomalous spectra and attaining competitive predictive accuracy considering a very low number of selected wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA