Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(9): 1500-1513, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37666965

RESUMO

Lateral roots are typically maintained at non-vertical angles with respect to gravity. These gravitropic setpoint angles are intriguing because their maintenance requires that roots are able to effect growth response both with and against the gravity vector, a phenomenon previously attributed to gravitropism acting against an antigravitropic offset mechanism. Here we show how the components mediating gravitropism in the vertical primary root-PINs and phosphatases acting upon them-are reconfigured in their regulation such that lateral root growth at a range of angles can be maintained. We show that the ability of Arabidopsis lateral roots to bend both downward and upward requires the generation of auxin asymmetries and is driven by angle-dependent variation in downward gravitropic auxin flux acting against angle-independent upward, antigravitropic flux. Further, we demonstrate a symmetry in auxin distribution in lateral roots at gravitropic setpoint angle that can be traced back to a net, balanced polarization of PIN3 and PIN7 auxin transporters in the columella. These auxin fluxes are shifted by altering PIN protein phosphoregulation in the columella, either by introducing PIN3 phosphovariant versions or via manipulation of levels of the phosphatase subunit PP2A/RCN1. Finally, we show that auxin, in addition to driving lateral root directional growth, acts within the lateral root columella to induce more vertical growth by increasing RCN1 levels, causing a downward shift in PIN3 localization, thereby diminishing the magnitude of the upward, antigravitropic auxin flux.


Assuntos
Arabidopsis , Gravitropismo , Ácidos Indolacéticos , Proteínas de Membrana Transportadoras , Monoéster Fosfórico Hidrolases
2.
Plant Methods ; 17(1): 11, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516255

RESUMO

BACKGROUND: Management regime can hugely influence the efficiency of crop production but measuring real-time below-ground responses is difficult. The combination of fertiliser application and mowing or grazing may have a major impact on roots and on the soil nutrient profile and leaching. RESULTS: A novel approach was developed using low-cost ion-selective sensors to track nitrate (NO3-) movement through soil column profiles sown with the forage crops, Lolium perenne and Medicago sativa. Applications of fertiliser, defoliation of crops and intercropping of the grass and the legume were tested. Sensor measurements were compared with conventional testing of lysimeter and leachate samples. There was little leaching of NO3- through soil profiles with current management practices, as monitored by both methods. After defoliation, the measurements detected a striking increase in soil NO3- in the middle of the column where the greatest density of roots was found. This phenomenon was not detected when no NO3- was applied, and when there was no defoliation, or during intercropping with Medicago. CONCLUSION: Mowing or grazing may increase rhizodeposition of carbon that stimulates soil mineralization to release NO3- that is acquired by roots without leaching from the profile. The soil columns and sensors provided a dynamic insight into rhizosphere responses to changes in above-ground management practices.

3.
J Exp Bot ; 71(18): 5689-5704, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32599619

RESUMO

The use of potential biostimulants is of broad interest in plant science for improving yields. The application of a humic derivative called fulvic acid (FA) may improve forage crop production. FA is an uncharacterized mixture of chemicals and, although it has been reported to increase growth parameters in many species including legumes, its mode of action remains unclear. Previous studies of the action of FA have lacked appropriate controls, and few have included field trials. Here we report yield increases due to FA application in three European Medicago sativa cultivars, in studies which include the appropriate nutritional controls which hitherto have not been used. No significant growth stimulation was seen after FA treatment in grass species in this study at the treatment rate tested. Direct application to bacteria increased Rhizobium growth and, in M. sativa trials, root nodulation was stimulated. RNA transcriptional analysis of FA-treated plants revealed up-regulation of many important early nodulation signalling genes after only 3 d. Experiments in plate, glasshouse, and field environments showed yield increases, providing substantial evidence for the use of FA to benefit M. sativa forage production.


Assuntos
Fabaceae , Rhizobium , Benzopiranos/farmacologia , Nodulação , Simbiose , Regulação para Cima
4.
Front Plant Sci ; 9: 535, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740468

RESUMO

Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA