Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(2): e17205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971141

RESUMO

Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.


Assuntos
Metagenômica , Resiliência Psicológica , Humanos , Animais , Recém-Nascido , Evolução Biológica , Genômica , Ruminantes/genética , Variação Genética/genética
2.
Nature ; 607(7918): 313-320, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768506

RESUMO

The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1-8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.


Assuntos
Cães , Genoma , Genômica , Filogenia , Lobos , África , Animais , DNA Antigo/análise , Cães/genética , Domesticação , Europa (Continente) , Genoma/genética , História Antiga , Oriente Médio , Mutação , América do Norte , Seleção Genética , Sibéria , Proteínas Supressoras de Tumor/genética , Lobos/classificação , Lobos/genética
3.
Curr Biol ; 32(7): 1650-1656.e3, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271794

RESUMO

Three principal methods are under discussion as possible pathways to "true" de-extinction; i.e., back-breeding, cloning, and genetic engineering.1,2 Of these, while the latter approach is most likely to apply to the largest number of extinct species, its potential is constrained by the degree to which the extinct species genome can be reconstructed. We explore this question using the extinct Christmas Island rat (Rattus macleari) as a model, an endemic rat species that was driven extinct between 1898 and 1908.3-5 We first re-sequenced its genome to an average of >60× coverage, then mapped it to the reference genomes of different Rattus species. We then explored how evolutionary divergence from the extant reference genome affected the fraction of the Christmas Island rat genome that could be recovered. Our analyses show that even when the extremely high-quality Norway brown rat (R. norvegicus) is used as a reference, nearly 5% of the genome sequence is unrecoverable, with 1,661 genes recovered at lower than 90% completeness, and 26 completely absent. Furthermore, we find the distribution of regions affected is not random, but for example, if 90% completeness is used as the cutoff, genes related to immune response and olfaction are excessively affected. Ultimately, our approach demonstrates the importance of applying similar analyses to candidates for de-extinction through genome editing in order to provide critical baseline information about how representative the edited form would be of the extinct species.


Assuntos
Genoma , Genômica , Animais , Austrália , Evolução Biológica , Extinção Biológica , Noruega , Filogenia , Ratos
4.
Mol Ecol Resour ; 22(4): 1231-1246, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34551203

RESUMO

Metabarcoding of DNA extracted from environmental or bulk specimen samples is increasingly used to profile biota in basic and applied biodiversity research because of its targeted nature that allows sequencing of genetic markers from many samples in parallel. To achieve this, PCR amplification is carried out with primers designed to target a taxonomically informative marker within a taxonomic group, and sample-specific nucleotide identifiers are added to the amplicons prior to sequencing. The latter enables assignment of the sequences back to the samples they originated from. Nucleotide identifiers can be added during the metabarcoding PCR and during "library preparation", that is, when amplicons are prepared for sequencing. Different strategies to achieve this labelling exist. All have advantages, challenges and limitations, some of which can lead to misleading results, and in the worst case compromise the fidelity of the metabarcoding data. Given the range of questions addressed using metabarcoding, ensuring that data generation is robust and fit for the chosen purpose is critically important for practitioners seeking to employ metabarcoding for biodiversity assessments. Here, we present an overview of the three main workflows for sample-specific labelling and library preparation in metabarcoding studies on Illumina sequencing platforms; one-step PCR, two-step PCR, and tagged PCR. Further, we distill the key considerations for researchers seeking to select an appropriate metabarcoding strategy for their specific study. Ultimately, by gaining insights into the consequences of different metabarcoding workflows, we hope to further consolidate the power of metabarcoding as a tool to assess biodiversity across a range of applications.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Código de Barras de DNA Taxonômico/métodos , Primers do DNA/genética , Biblioteca Gênica , Reação em Cadeia da Polimerase
5.
Anim Microbiome ; 3(1): 30, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879261

RESUMO

BACKGROUND: Infectious diseases cause significant production losses in aquaculture every year. Since the gut microbiota plays an essential role in regulating the host immune system, health and physiology, altered gut microbiota compositions are often associated with a diseased status. However, few studies have examined the association between disease severity and degree of gut dysbiosis, especially when the gut is not the site of the primary infection. Moreover, there is a lack of knowledge on whether bath treatment with formalin, a disinfectant commonly used in aquaculture to treat external infections, might affect the gut microbiome as a consequence of formalin ingestion. Here we investigate, through 16S rRNA gene metabarcoding, changes in the distal gut microbiota composition of a captive-reared cohort of 80 Atlantic salmon (Salmo salar L.), in consequence of an external bacterial skin infection due to a natural outbreak and subsequent formalin treatment. RESULTS: We identified Tenacibaculum dicentrarchi as the causative disease pathogen and we show that the distal gut of diseased salmon presented a different composition from that of healthy individuals. A new, yet undescribed, Mycoplasma genus characterized the gut of healthy salmon, while in the sick fish we observed an increase in terms of relative abundance of Aliivibrio sp., a strain regarded as opportunistic. We also noticed a positive correlation between fish weight and Mycoplasma sp. relative abundance, potentially indicating a beneficial effect for its host. Moreover, we observed that the gut microbiota of fish treated with formalin was more similar to those of sick fish than healthy ones. CONCLUSIONS: We conclude that external Tenacibaculum infections have the potential of indirectly affecting the host gut microbiota. As such, treatment optimization procedures should account for that. Formalin treatment is not an optimal solution from a holistic perspective, since we observe an altered gut microbiota in the treated fish. We suggest its coupling with a probiotic treatment aimed at re-establishing a healthy community. Lastly, we have observed a positive correlation of Mycoplasma sp. with salmon health and weight, therefore we encourage further investigations towards its potential utilization as a biomarker for monitoring health in salmon and potentially other farmed fish species.

6.
Nature ; 591(7848): 87-91, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442059

RESUMO

Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America1, yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae2,3, there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently.


Assuntos
Extinção Biológica , Filogenia , Lobos/classificação , Animais , Fósseis , Fluxo Gênico , Genoma/genética , Genômica , Mapeamento Geográfico , América do Norte , Paleontologia , Fenótipo , Lobos/genética
7.
Adv Genet (Hoboken) ; 2(2): e10051, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36618122

RESUMO

Enigmatic phenomena have sparked the imagination of people around the globe into creating folkloric creatures. One prime example is Zana of Abkhazia (South Caucasus), a well-documented 19th century female who was captured living wild in the forest. Zana's appearance was sufficiently unusual, that she was referred to by locals as an Almasty-the analog of Bigfoot in the Caucasus. Although the exact location of Zana's burial site was unknown, the grave of her son, Khwit, was identified in 1971. The genomes of Khwit and the alleged Zana skeleton were sequenced to an average depth of ca. 3× using ancient DNA techniques. The identical mtDNA and parent-offspring relationship between the two indicated that the unknown woman was indeed Zana. Population genomic analyses demonstrated that Zana's immediate genetic ancestry can likely be traced to present-day East-African populations. We speculate that Zana might have had a genetic disorder such as congenital generalized hypertrichosis which could partially explain her strange behavior, lack of speech, and long body hair. Our findings elucidate Zana's unfortunate story and provide a clear example of how prejudices of the time led to notions of cryptic hominids that are still held and transmitted by some today.

8.
Curr Biol ; 31(1): 198-206.e8, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33125870

RESUMO

Extant Canis lupus genetic diversity can be grouped into three phylogenetically distinct clades: Eurasian and American wolves and domestic dogs.1 Genetic studies have suggested these groups trace their origins to a wolf population that expanded during the last glacial maximum (LGM)1-3 and replaced local wolf populations.4 Moreover, ancient genomes from the Yana basin and the Taimyr peninsula provided evidence of at least one extinct wolf lineage that dwelled in Siberia during the Pleistocene.35 Previous studies have suggested that Pleistocene Siberian canids can be classified into two groups based on cranial morphology. Wolves in the first group are most similar to present-day populations, although those in the second group possess intermediate features between dogs and wolves.67 However, whether this morphological classification represents distinct genetic groups remains unknown. To investigate this question and the relationships between Pleistocene canids, present-day wolves, and dogs, we resequenced the genomes of four Pleistocene canids from Northeast Siberia dated between >50 and 14 ka old, including samples from the two morphological categories. We found these specimens cluster with the two previously sequenced Pleistocene wolves, which are genetically more similar to Eurasian wolves. Our results show that, though the four specimens represent extinct wolf lineages, they do not form a monophyletic group. Instead, each Pleistocene Siberian canid branched off the lineage that gave rise to present-day wolves and dogs. Finally, our results suggest the two previously described morphological groups could represent independent lineages similarly related to present-day wolves and dogs.


Assuntos
DNA Antigo , Cães/genética , Genoma , Lobos/genética , Animais , Biodiversidade , DNA Mitocondrial/genética , Cães/anatomia & histologia , Extinção Biológica , Ásia Oriental , Fósseis , Geografia , Filogenia , Sibéria , Crânio/anatomia & histologia , Lobos/anatomia & histologia
9.
PLoS One ; 15(10): e0240512, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057402

RESUMO

Bacteria play an important role in the degradation of bone material. However, much remains to be learnt about the structure of their communities in degrading bone, and how the depositional environment influences their diversity throughout the exposure period. We genetically profiled the bacterial community in an experimental series of pig bone fragments (femur and humeri) deposited at different well-defined environments in Denmark. The bacterial community in the bone fragments and surrounding depositional environment were studied over one year, and correlated with the bioerosion damage patterns observed microscopically in the bones. We observed that the bacterial communities within the bones were heavily influenced by the local microbial community, and that the general bone microbial diversity increases with time after exposure. We found the presence of several known collagenase producing bacterial groups, and also observed increases in the relative abundance of several of these in bones with tunneling. We anticipate that future analyses using shotgun metagenomics on this and similar datasets will be able to provide insights into mechanisms of microbiome driven bone degradation.


Assuntos
Bactérias/crescimento & desenvolvimento , Osso e Ossos/microbiologia , Osso e Ossos/patologia , Exposição Ambiental/análise , Microbiota , Animais , Bactérias/classificação , Bactérias/genética , Osso e Ossos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Suínos
10.
Mol Ecol Resour ; 20(6): 1620-1631, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32663358

RESUMO

Metabarcoding of environmental DNA (eDNA) and DNA extracted from bulk specimen samples is a powerful tool in studies of biodiversity, diet and ecological interactions as its inherent labelling of amplicons allows sequencing of taxonomically informative genetic markers from many samples in parallel. However, the occurrence of so-called 'tag-jumps' can cause incorrect assignment of sequences to samples and artificially inflate diversity. Two steps during library preparation of pools of 5' nucleotide-tagged amplicons have been suggested to cause tag-jumps: (a) T4 DNA polymerase blunt-ending in the end-repair step and (b) postligation PCR amplification of amplicon libraries. The discovery of tag-jumps has led to recommendations to only carry out metabarcoding PCR amplifications with primers carrying twin-tags to ensure that tag-jumps cannot result in false assignments of sequences to samples. As this increases both cost and workload, a metabarcoding library preparation protocol which circumvents the two steps that causes tag-jumps is needed. Here, we demonstrate Tagsteady, a PCR-free metabarcoding Illumina library preparation protocol for pools of nucleotide-tagged amplicons that enables efficient and cost-effective generation of metabarcoding data with virtually no tag-jumps. We use pools of twin-tagged amplicons to investigate the effect of T4 DNA polymerase blunt-ending and postligation PCR on the occurrence of tag-jumps and demonstrate that both blunt-ending and postligation PCR, alone or together, can result in detrimental amounts of tag-jumps (here, up to ca. 49% of total sequences), while leaving both steps out (the Tagsteady protocol) results in amounts of sequences carrying new combinations of used tags (tag-jumps) comparable to background contamination.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Biblioteca Gênica , Primers do DNA , Reação em Cadeia da Polimerase
11.
Science ; 368(6498): 1495-1499, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32587022

RESUMO

Although sled dogs are one of the most specialized groups of dogs, their origin and evolution has received much less attention than many other dog groups. We applied a genomic approach to investigate their spatiotemporal emergence by sequencing the genomes of 10 modern Greenland sled dogs, an ~9500-year-old Siberian dog associated with archaeological evidence for sled technology, and an ~33,000-year-old Siberian wolf. We found noteworthy genetic similarity between the ancient dog and modern sled dogs. We detected gene flow from Pleistocene Siberian wolves, but not modern American wolves, to present-day sled dogs. The results indicate that the major ancestry of modern sled dogs traces back to Siberia, where sled dog-specific haplotypes of genes that potentially relate to Arctic adaptation were established by 9500 years ago.


Assuntos
Adaptação Fisiológica/genética , Cães/genética , Animais , Apolipoproteínas/genética , Regiões Árticas , Ácidos Graxos/metabolismo , Genoma , Groenlândia , Haplótipos , Proteínas de Transporte da Membrana Mitocondrial/genética , Seleção Artificial , Análise de Sequência de DNA , Sibéria , Triglicerídeos/metabolismo , Lobos/genética
12.
Proc Natl Acad Sci U S A ; 117(20): 10927-10934, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366643

RESUMO

Lions are one of the world's most iconic megafauna, yet little is known about their temporal and spatial demographic history and population differentiation. We analyzed a genomic dataset of 20 specimens: two ca. 30,000-y-old cave lions (Panthera leo spelaea), 12 historic lions (Panthera leo leo/Panthera leo melanochaita) that lived between the 15th and 20th centuries outside the current geographic distribution of lions, and 6 present-day lions from Africa and India. We found that cave and modern lions shared an ancestor ca. 500,000 y ago and that the 2 lineages likely did not hybridize following their divergence. Within modern lions, we found 2 main lineages that diverged ca. 70,000 y ago, with clear evidence of subsequent gene flow. Our data also reveal a nearly complete absence of genetic diversity within Indian lions, probably due to well-documented extremely low effective population sizes in the recent past. Our results contribute toward the understanding of the evolutionary history of lions and complement conservation efforts to protect the diversity of this vulnerable species.


Assuntos
Evolução Molecular , Leões/genética , Leões/fisiologia , África , Animais , Fluxo Gênico , Variação Genética , Genômica , Geografia , Índia , Leões/classificação , Masculino , Filogenia , Cromossomo X
13.
Mol Biol Evol ; 37(3): 773-785, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31697387

RESUMO

The protozoan Plasmodium vivax is responsible for 42% of all cases of malaria outside Africa. The parasite is currently largely restricted to tropical and subtropical latitudes in Asia, Oceania, and the Americas. Though, it was historically present in most of Europe before being finally eradicated during the second half of the 20th century. The lack of genomic information on the extinct European lineage has prevented a clear understanding of historical population structuring and past migrations of P. vivax. We used medical microscope slides prepared in 1944 from malaria-affected patients from the Ebro Delta in Spain, one of the last footholds of malaria in Europe, to generate a genome of a European P. vivax strain. Population genetics and phylogenetic analyses placed this strain basal to a cluster including samples from the Americas. This genome allowed us to calibrate a genomic mutation rate for P. vivax, and to estimate the mean age of the last common ancestor between European and American strains to the 15th century. This date points to an introduction of the parasite during the European colonization of the Americas. In addition, we found that some known variants for resistance to antimalarial drugs, including Chloroquine and Sulfadoxine, were already present in this European strain, predating their use. Our results shed light on the evolution of an important human pathogen and illustrate the value of antique medical collections as a resource for retrieving genomic information on pathogens from the past.


Assuntos
Malária Vivax/parasitologia , Plasmodium vivax/classificação , Plasmodium vivax/genética , Sequenciamento Completo do Genoma/métodos , América , Ásia , Evolução Molecular , Genética Populacional , Genoma de Protozoário , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Oceania , Filogenia , Filogeografia , Espanha
15.
Microb Genom ; 5(9)2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31454309

RESUMO

Malaria was present in most of Europe until the second half of the 20th century, when it was eradicated through a combination of increased surveillance and mosquito control strategies, together with cross-border and political collaboration. Despite the severe burden of malaria on human populations, it remains contentious how the disease arrived and spread in Europe. Here, we report a partial Plasmodium falciparum nuclear genome derived from a set of antique medical slides stained with the blood of malaria-infected patients from Spain's Ebro Delta, dating to the 1940s. Our analyses of the genome of this now eradicated European P. falciparum strain confirms stronger phylogeographical affinity to present-day strains in circulation in central south Asia, rather than to those in Africa. This points to a longitudinal, rather than a latitudinal, spread of malaria into Europe. In addition, this genome displays two derived alleles in the pfmrp1 gene that have been associated with drug resistance. Whilst this could represent standing variation in the ancestral P. falciparum population, these mutations may also have arisen due to the selective pressure of quinine treatment, which was an anti-malarial drug already in use by the time the sample we sequenced was mounted on a slide.


Assuntos
Genoma de Protozoário , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Ásia Central , Proteínas de Ligação a DNA/genética , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Europa (Continente) , Genética Populacional , Humanos , Malária/parasitologia , Malária/patologia , Filogeografia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , Fatores de Transcrição/genética
16.
Front Microbiol ; 10: 697, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024486

RESUMO

Although there is an extensive tradition of research into the microbes that underlie the winemaking process, much remains to be learnt. We combined the high-throughput sequencing (HTS) tools of metabarcoding and metagenomics, to characterize how microbial communities of Riesling musts sampled at four different vineyards, and their subsequent spontaneously fermented derivatives, vary. We specifically explored community variation relating to three points: (i) how microbial communities vary by vineyard; (ii) how community biodiversity changes during alcoholic fermentation; and (iii) how microbial community varies between musts that successfully complete alcoholic fermentation and those that become 'stuck' in the process. Our metabarcoding data showed a general influence of microbial composition at the vineyard level. Two of the vineyards (4 and 5) had strikingly a change in the differential abundance of Metschnikowia. We therefore additionally performed shotgun metagenomic sequencing on a subset of the samples to provide preliminary insights into the potential relevance of this observation, and used the data to both investigate functional potential and reconstruct draft genomes (bins). At these two vineyards, we also observed an increase in non-Saccharomycetaceae fungal functions, and a decrease in bacterial functions during the early fermentation stage. The binning results yielded 11 coherent bins, with both vineyards sharing the yeast bins Hanseniaspora and Saccharomyces. Read recruitment and functional analysis of this data revealed that during fermentation, a high abundance of Metschnikowia might serve as a biocontrol agent against bacteria, via a putative iron depletion pathway, and this in turn could help Saccharomyces dominate the fermentation. During alcoholic fermentation, we observed a general decrease in biodiversity in both the metabarcoding and metagenomic data. Unexpected Micrococcus behavior was observed in vineyard 4 according to metagenomic analyses based on reference-based read mapping. Analysis of open reading frames using these data showed an increase of functions assigned to class Actinobacteria in the end of fermentation. Therefore, we hypothesize that bacteria might sit-and-wait until Saccharomyces activity slows down. Complementary approaches to annotation instead of relying a single database provide more coherent information true species. Lastly, our metabarcoding data enabled us to identify a relationship between stuck fermentations and Starmerella abundance. Given that robust chemical analysis indicated that although the stuck samples contained residual glucose, all fructose had been consumed, we hypothesize that this was because fructophilic Starmerella, rather than Saccharomyces, dominated these fermentations. Overall, our results showcase the different ways in which metagenomic analyses can improve our understanding of the wine alcoholic fermentation process.

17.
Mol Ecol Resour ; 19(2): 512-525, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30575257

RESUMO

In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome-scale studies to characterize both model and non-model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome-wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site-associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms-enabling the exploration of diverse evolutionary and conservation questions.


Assuntos
Elementos de DNA Transponíveis , Genética Populacional/métodos , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Animais , Cervos , Reação em Cadeia da Polimerase/métodos , Ratos , Lobos
19.
Curr Biol ; 28(21): 3441-3449.e5, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30344120

RESUMO

The evolutionary history of the wolf-like canids of the genus Canis has been heavily debated, especially regarding the number of distinct species and their relationships at the population and species level [1-6]. We assembled a dataset of 48 resequenced genomes spanning all members of the genus Canis except the black-backed and side-striped jackals, encompassing the global diversity of seven extant canid lineages. This includes eight new genomes, including the first resequenced Ethiopian wolf (Canis simensis), one dhole (Cuon alpinus), two East African hunting dogs (Lycaon pictus), two Eurasian golden jackals (Canis aureus), and two Middle Eastern gray wolves (Canis lupus). The relationships between the Ethiopian wolf, African golden wolf, and golden jackal were resolved. We highlight the role of interspecific hybridization in the evolution of this charismatic group. Specifically, we find gene flow between the ancestors of the dhole and African hunting dog and admixture between the gray wolf, coyote (Canis latrans), golden jackal, and African golden wolf. Additionally, we report gene flow from gray and Ethiopian wolves to the African golden wolf, suggesting that the African golden wolf originated through hybridization between these species. Finally, we hypothesize that coyotes and gray wolves carry genetic material derived from a "ghost" basal canid lineage.


Assuntos
Evolução Biológica , Canidae/genética , Fluxo Gênico , Hibridização Genética , Filogenia , Animais
20.
Gigascience ; 6(8): 1-13, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854615

RESUMO

Ancient DNA research has been revolutionized following development of next-generation sequencing platforms. Although a number of such platforms have been applied to ancient DNA samples, the Illumina series are the dominant choice today, mainly because of high production capacities and short read production. Recently a potentially attractive alternative platform for palaeogenomic data generation has been developed, the BGISEQ-500, whose sequence output are comparable with the Illumina series. In this study, we modified the standard BGISEQ-500 library preparation specifically for use on degraded DNA, then directly compared the sequencing performance and data quality of the BGISEQ-500 to the Illumina HiSeq2500 platform on DNA extracted from 8 historic and ancient dog and wolf samples. The data generated were largely comparable between sequencing platforms, with no statistically significant difference observed for parameters including level (P = 0.371) and average sequence length (P = 0718) of endogenous nuclear DNA, sequence GC content (P = 0.311), double-stranded DNA damage rate (v. 0.309), and sequence clonality (P = 0.093). Small significant differences were found in single-strand DNA damage rate (δS; slightly lower for the BGISEQ-500, P = 0.011) and the background rate of difference from the reference genome (θ; slightly higher for BGISEQ-500, P = 0.012). This may result from the differences in amplification cycles used to polymerase chain reaction-amplify the libraries. A significant difference was also observed in the mitochondrial DNA percentages recovered (P = 0.018), although we believe this is likely a stochastic effect relating to the extremely low levels of mitochondria that were sequenced from 3 of the samples with overall very low levels of endogenous DNA. Although we acknowledge that our analyses were limited to animal material, our observations suggest that the BGISEQ-500 holds the potential to represent a valid and potentially valuable alternative platform for palaeogenomic data generation that is worthy of future exploration by those interested in the sequencing and analysis of degraded DNA.


Assuntos
Genômica/métodos , Genômica/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Animais , Composição de Bases , DNA/química , DNA Mitocondrial/química , Reprodutibilidade dos Testes , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA