Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518601

RESUMO

Triple-negative breast cancer (TNBC) is characterised by its aggressiveness and resistance to chemotherapy, demanding the development of effective strategies against its unique characteristics. Derived from lapacho tree bark, ß-lapachone (ß-LP) selectively targets cancer cells with elevated levels of the detoxifying enzyme NQO1. Hydroxytyrosol (HT) is a phenolic compound derived from olive trees with important anticancer properties that include the inhibition of cancer stem cells (CSCs) and metastatic features in TNBC, as well as relevant antioxidant activities by mechanisms such as the induction of NQO1. We aimed to study whether these compounds could have synergistic anticancer activity in TNBC cells and the possible role of NQO1. For this pourpose, we assessed the impact of ß-LP (0.5 or 1.5 µM) and HT (50 and 100 µM) on five TNBC cell lines. We demonstrated that the combination of ß-LP and HT exhibits anti-proliferative, pro-apoptotic, and cell cycle arrest effects in several TNBC cells, including docetaxel-resistant TNBC cells. Additionally, it effectively inhibits the self-renewal and clonogenicity of CSCs, modifying their aggressive phenotype. However, the notable impact of the ß-LP-HT combination does not appear to be solely associated with the levels of the NQO1 protein and ROS. RNA-Seq analysis revealed that the combination's anticancer activity is linked to a strong induction of endoplasmic reticulum stress and apoptosis through the unfolded protein response. In conclusion, in this study, we demonstrated how the combination of ß-LP and HT could offer an affordable, safe, and effective approach against TNBC.


Assuntos
Apoptose , Proliferação de Células , NAD(P)H Desidrogenase (Quinona) , Naftoquinonas , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Naftoquinonas/farmacologia , Linhagem Celular Tumoral , Álcool Feniletílico/farmacologia , Apoptose/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Proliferação de Células/efeitos dos fármacos , Feminino , Sinergismo Farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos
2.
Int J Biol Sci ; 19(1): 204-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594086

RESUMO

In triple-negative breast cancer (TNBC), the pleiotropic NDRG1 (N-Myc downstream regulated gene 1) promotes progression and worse survival, yet contradictory results were documented, and the mechanisms remain unknown. Phosphorylation and localization could drive NDRG1 pleiotropy, nonetheless, their role in TNBC progression and clinical outcome was not investigated. We found enhanced p-NDRG1 (Thr346) by TGFß1 and explored whether it drives NDRG1 pleiotropy and TNBC progression. In tissue microarrays of 81 TNBC patients, we identified that staining and localization of NDRG1 and p-NDRG1 (Thr346) are biomarkers and risk factors associated with shorter overall survival. We found that TGFß1 leads NDRG1, downstream of GSK3ß, and upstream of NF-κB, to differentially regulate migration, invasion, epithelial-mesenchymal transition, tumor initiation, and maintenance of different populations of cancer stem cells (CSCs), depending on the progression stage of tumor cells, and the combination of TGFß and GSK3ß inhibitors impaired CSCs. The present study revealed the striking importance to assess both total NDRG1 and p-NDRG1 (Thr346) positiveness and subcellular localization to evaluate patient prognosis and their stratification. NDRG1 pleiotropy is driven by TGFß to differentially promote metastasis and/or maintenance of CSCs at different stages of tumor progression, which could be abrogated by the inhibition of TGFß and GSK3ß.


Assuntos
Proteínas de Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular , Fator de Crescimento Transformador beta , Neoplasias de Mama Triplo Negativas , Humanos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , NF-kappa B/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
Oncogene ; 41(28): 3611-3624, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35680984

RESUMO

Reversible transition between the epithelial and mesenchymal states are key aspects of carcinoma cell dissemination and the metastatic disease, and thus, characterizing the molecular basis of the epithelial to mesenchymal transition (EMT) is crucial to find druggable targets and more effective therapeutic approaches in cancer. Emerging studies suggest that epigenetic regulators might endorse cancer cells with the cell plasticity required to conduct dynamic changes in cell state during EMT. However, epigenetic mechanisms involved remain mostly unknown. Polycomb Repressive Complexes (PRCs) proteins are well-established epigenetic regulators of development and stem cell differentiation, but their role in different cancer systems is inconsistent and sometimes paradoxical. In this study, we have analysed the role of the PRC2 protein EZH2 in lung carcinoma cells. We found that besides its described role in CDKN2A-dependent cell proliferation, EZH2 upholds the epithelial state of cancer cells by repressing the transcription of hundreds of mesenchymal genes. Chemical inhibition or genetic removal of EZH2 promotes the residence of cancer cells in the mesenchymal state during reversible epithelial-mesenchymal transition. In fitting, analysis of human patient samples and tumour xenograft models indicate that EZH2 is required to efficiently repress mesenchymal genes and facilitate tumour colonization in vivo. Overall, this study discloses a novel role of PRC2 as a master regulator of EMT in carcinoma cells. This finding has important implications for the design of therapies based on EZH2 inhibitors in human cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Diferenciação Celular , Linhagem Celular Tumoral , Plasticidade Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas do Grupo Polycomb
4.
Pharmaceutics ; 14(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35335881

RESUMO

Breast cancer is the most common type of malignancy and leading cause of cancer death among women worldwide. Despite the current revolutionary advances in the field of cancer immunotherapy, clinical response in breast cancer is frequently below expectations, in part due to various mechanisms of cancer immune escape that produce tumor variants that are resistant to treatment. Thus, a further understanding of the molecular events underlying immune evasion in breast cancer may guarantee a significant improvement in the clinical success of immunotherapy. Furthermore, nanomedicine provides a promising opportunity to enhance the efficacy of cancer immunotherapy by improving the delivery, retention and release of immunostimulatory agents in targeted cells and tumor tissues. Hence, it can be used to overcome tumor immune escape and increase tumor rejection in numerous malignancies, including breast cancer. In this review, we summarize the current status and emerging trends in nanomedicine-based strategies targeting cancer immune evasion and modulating the immunosuppressive tumor microenvironment, including the inhibition of immunosuppressive cells in the tumor area, the activation of dendritic cells and the stimulation of the specific antitumor T-cell response.

5.
Antioxidants (Basel) ; 10(2)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572626

RESUMO

Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on "redoxidomics" or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.

6.
Stem Cells Transl Med ; 9(5): 636-650, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32073751

RESUMO

Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising cell therapy in regenerative medicine and for autoimmune/inflammatory diseases. However, a main hurdle for MSCs-based therapies is the loss of their proliferative potential in vitro. Here we report that glycoprotein A repetitions predominant (GARP) is required for the proliferation and survival of adipose-derived MSCs (ASCs) via its regulation of transforming growth factor-ß (TGF-ß) activation. Silencing of GARP in human ASCs increased their activation of TGF-ß which augmented the levels of mitochondrial reactive oxygen species (mtROS), resulting in DNA damage, a block in proliferation and apoptosis. Inhibition of TGF-ß signaling reduced the levels of mtROS and DNA damage and restored the ability of GARP-/low ASCs to proliferate. In contrast, overexpression of GARP in ASCs increased their proliferative capacity and rendered them more resistant to etoposide-induced DNA damage and apoptosis, in a TGF-ß-dependent manner. In summary, our data show that the presence or absence of GARP on ASCs gives rise to distinct TGF-ß responses with diametrically opposing effects on ASC proliferation and survival.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos
7.
Eur J Nutr ; 58(3): 1203-1211, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29468462

RESUMO

PURPOSE: The main objective of this study was to test the therapeutic potential of hydroxytyrosol and its combination with paclitaxel in breast cancer on oxidative stress status. METHODS: Impact on proliferation rates of different chemotherapy administration patterns was assayed in MCF-7 and MDA-MB-231 breast cancer cell lines. Breast tumor-bearing rats were randomly assigned to Control, Hydroxytyrosol, Paclitaxel and Paclitaxel plus hydroxytyrosol groups, for 6 weeks. Tumor volume, cell proliferation and several systemic oxidative stress parameters were measured. Anti-proliferative activity in vitro experiments was correlated with in vivo experiments. RESULTS: Combination group did significantly reduce tumor volume when compared with paclitaxel alone. Additionally, the combination improved the antioxidant status without compromising the antitumor activity of standard chemotherapy. CONCLUSION: These findings reveal for the first time that hydroxytyrosol is an active partner in combined therapies with paclitaxel against breast cancer. Combination with hydroxytyrosol would also ensure a less oxidative impact of chemotherapeutic drugs that could potentially improve patient wellness.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Neoplasias da Mama/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Paclitaxel/farmacologia , Álcool Feniletílico/análogos & derivados , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Álcool Feniletílico/farmacologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
8.
Eur J Nutr ; 58(8): 3207-3219, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30460610

RESUMO

PURPOSE: This study was aimed to determine the impact of hydroxytyrosol (HT), a minor compound found in olive oil, on breast cancer stem cells (BCSCs) and the migration capacity of triple-negative breast cancer (TNBC) cell lines through the alteration of epithelial-to-mesenchymal transition (EMT) and embryonic signaling pathways. METHODS: BCSCs self-renewal was determined by the mammosphere-forming efficiency in SUM159PT, BT549, MDA-MB-231 and Hs578T TNBC cell lines. Flow cytometric analysis of CD44+/CD24-/low and aldehyde dehydrogenase positive (ALDH+) subpopulations, migration by the "wound healing assay", invasion and Western blot of EMT markers and TGFß signaling were investigated in SUM159PT, BT549 and MDA-MB-231 cell lines. Wnt/ß-catenin signaling was assessed by Western blot in BT549 cells expressing WNT1 and MDA-MB-231 cells. Changes in TGFß activity was determined by SMAD Binding Element (SBE) reporter assay. RESULTS: HT reduced BCSCs self-renewal, ALDH+ (aldehyde dehydrogenase) and CD44+/CD24-/low subpopulations, tumor cell migration and invasion. Consistently, HT suppressed Wnt/ß-catenin signaling by decreasing p-LRP6, LRP6, ß-catenin and cyclin D1 protein expression and the EMT markers SLUG, ZEB1, SNAIL and VIMENTIN. Finally, HT inhibited p-SMAD2/3 and SMAD2/3 in SUM159PT, BT549 and MDA-MB-231 cells, what was correlated with a less TGFß activity. CONCLUSION: In conclusion, we report for the first time the inhibitory role of HT on BCSCs and tumor cell migration by targeting EMT, Wnt/ß-catenin and TGFß signaling pathways. Our findings highlight the importance of the chemopreventive compound HT as a novel candidate to be investigated as an alternative targeted therapy for TNBC.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Fator de Crescimento Transformador beta/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/efeitos dos fármacos , Antioxidantes/farmacologia , Western Blotting , Citometria de Fluxo , Humanos , Álcool Feniletílico/farmacologia , Células Tumorais Cultivadas
9.
Clin Cancer Res ; 24(22): 5697-5709, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30012564

RESUMO

Purpose: On the basis of the identified stress-independent cellular functions of activating transcription factor 4 (ATF4), we reported enhanced ATF4 levels in MCF10A cells treated with TGFß1. ATF4 is overexpressed in patients with triple-negative breast cancer (TNBC), but its impact on patient survival and the underlying mechanisms remain unknown. We aimed to determine ATF4 effects on patients with breast cancer survival and TNBC aggressiveness, and the relationships between TGFß and ATF4. Defining the signaling pathways may help us identify a cell signaling-tailored gene signature.Experimental Design: Patient survival data were determined by Kaplan-Meier analysis. Relationship between TGFß and ATF4, their effects on aggressiveness (tumor proliferation, metastasis, and stemness), and the underlying pathways were analyzed in three TNBC cell lines and in vivo using patient-derived xenografts (PDX).Results: ATF4 overexpression correlated with TNBC patient survival decrease and a SMAD-dependent crosstalk between ATF4 and TGFß was identified. ATF4 expression inhibition reduced migration, invasiveness, mammosphere-forming efficiency, proliferation, epithelial-mesenchymal transition, and antiapoptotic and stemness marker levels. In PDX models, ATF4 silencing decreased metastases, tumor growth, and relapse after chemotherapy. ATF4 was shown to be active downstream of SMAD2/3/4 and mTORC2, regulating TGFß/SMAD and mTOR/RAC1-RHOA pathways independently of stress. We defined an eight-gene signature with prognostic potential, altered in 45% of 2,509 patients with breast cancer.Conclusions: ATF4 may represent a valuable prognostic biomarker and therapeutic target in patients with TNBC, and we identified a cell signaling pathway-based gene signature that may contribute to the development of combinatorial targeted therapies for breast cancer. Clin Cancer Res; 24(22); 5697-709. ©2018 AACR.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fator 4 Ativador da Transcrição/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional/métodos , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Prognóstico , RNA Interferente Pequeno/genética , Transcriptoma , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade
10.
J Control Release ; 262: 18-27, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28700900

RESUMO

Pharmacological therapies for cardiovascular diseases are limited by short-term pharmacokinetics and extra-cardiac adverse effects. Improving delivery selectivity specifically to the heart, wherein therapeutic drug levels can be maintained over time, is highly desirable. Nanoparticle (NP)-based pericardial drug delivery could provide a strategy to concentrate therapeutics within a unique, cardiac-restricted compartment to allow sustained drug penetration into the myocardium. Our objective was to explore the kinetics of myocardial penetration and retention after pericardial NP drug delivery. Fluorescently-tagged poly(lactic-co-glycolic acid) (PLGA) NPs were loaded with BODIPY, a fluorophore, and percutaneously administered into the pericardium via subxiphoid puncture in rabbits. At distinct timepoints hearts were examined for presence of NPs and BODIPY. PLGA NPs were found non-uniformly distributed on the epicardium following pericardial administration, displaying a half-life of ~2.5days in the heart. While NPs were mostly confined to epicardial layers, BODIPY was capable of penetrating into the myocardium, resulting in a transmural gradient. The distinct architecture and physiology of the different regions of the heart influenced BODIPY distribution, with fluorophore penetrating more readily into atria than ventricles. BODIPY proved to have a long-term presence within the heart, with a half-life of ~7days. Our findings demonstrate the potential of utilizing the pericardial space as a sustained drug-eluting reservoir through the application of nanoparticle-based drug delivery, opening several exciting avenues for selective and prolonged cardiac therapeutics.


Assuntos
Ácido Láctico/administração & dosagem , Miocárdio/metabolismo , Nanopartículas/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Animais , Compostos de Boro/administração & dosagem , Compostos de Boro/farmacocinética , Vias de Administração de Medicamentos , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Ácido Láctico/farmacocinética , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos
11.
Int J Pharm ; 524(1-2): 257-267, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28359821

RESUMO

Vascular remodeling resulting from pulmonary arterial hypertension (PAH) leads to endothelial fenestrations. This feature can be exploited by nanoparticles (NP), allowing them to extravasate from circulation and accumulate in remodeled pulmonary vessels. Hyperactivation of the mTOR pathway in PAH drives pulmonary arterial smooth muscle cell proliferation. We hypothesized that rapamycin (RAP)-loaded NPs, an mTOR inhibitor, would accumulate in diseased lungs, selectively targeting vascular mTOR and preventing PAH progression. RAP poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) NPs were fabricated. NP accumulation and efficacy were examined in a rat monocrotaline model of PAH. Following intravenous (IV) administration, NP accumulation in diseased lungs was verified via LC/MS analysis and confocal imaging. Pulmonary arteriole thickness, right ventricular systolic pressures, and ventricular remodeling were determined to assess the therapeutic potential of RAP NPs. Monocrotaline-exposed rats showed increased NP accumulation within lungs compared to healthy controls, with NPs present to a high extent within pulmonary perivascular regions. RAP, in both free and NP form, attenuated PAH development, with histological analysis revealing minimal changes in pulmonary arteriole thickness and no ventricular remodeling. Importantly, NP-treated rats showed reduced systemic side effects compared to free RAP. This study demonstrates the potential for nanoparticles to significantly impact PAH through site-specific delivery of therapeutics.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Pulmão/efeitos dos fármacos , Nanopartículas/administração & dosagem , Sirolimo/farmacologia , Administração Intravenosa , Animais , Modelos Animais de Doenças , Pulmão/patologia , Ratos , Ratos Sprague-Dawley , Sirolimo/administração & dosagem
12.
Eur J Heart Fail ; 18(2): 169-78, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26749465

RESUMO

AIMS: Ongoing inflammation and endothelial dysfunction occurs within the local microenvironment of heart failure, creating an appropriate scenario for successful use and delivery of nanovectors. This study sought to investigate whether cardiovascular cells associate, internalize, and traffic a nanoplatform called mesoporous silicon vector (MSV), and determine its intravenous accumulation in cardiac tissue in a murine model of heart failure. METHODS AND RESULTS: In vitro cellular uptake and intracellular trafficking of MSVs was examined by scanning electron microscopy, confocal microscopy, time-lapse microscopy, and flow cytometry in cardiac myocytes, fibroblasts, smooth muscle cells, and endothelial cells. The MSVs were internalized within the first hours, and trafficked to perinuclear regions in all the cell lines. Cytotoxicity was investigated by annexin V and cell cycle assays. No significant evidence of toxicity was found. In vivo intravenous cardiac accumulation of MSVs was examined by high content fluorescence and confocal microscopy, with results showing increased accumulation of particles in failing hearts compared with normal hearts. Similar to observations in vitro, MSVs were able to associate, internalize, and traffic to the perinuclear region of cardiomyocytes in vivo. CONCLUSIONS: Results show that MSVs associate, internalize, and traffic in cardiovascular cells without any significant toxicity. Furthermore, MSVs accumulate in failing myocardium after intravenous administration, reaching intracellular regions of the cardiomyocytes. These findings represent a novel avenue to develop nanotechnology-based therapeutics and diagnostics in heart failure.


Assuntos
Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Coração/fisiologia , Coração/fisiopatologia , Miócitos Cardíacos/fisiologia , Nanoestruturas/uso terapêutico , Animais , Materiais Biocompatíveis , Modelos Animais de Doenças , Insuficiência Cardíaca/fisiopatologia , Humanos , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio , Polímeros , Silício
13.
Mol Ther ; 22(7): 1310-1319, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24569835

RESUMO

Ongoing clinical trials target the aberrant PI3K/Akt/mammalian target of rapamycin (mTOR) pathway in breast cancer through administration of rapamycin, an allosteric mTOR inhibitor, in combination with paclitaxel. However, synergy may not be fully exploited clinically because of distinct pharmacokinetic parameters of drugs. This study explores the synergistic potential of site-specific, colocalized delivery of rapamycin and paclitaxel through nanoparticle incorporation. Nanoparticle drug loading was accurately controlled, and synergistic drug ratios established in vitro. Precise drug ratios were maintained in tumors 48 hours after nanoparticle administration to mice, at levels twofold greater than liver and spleen, yielding superior antitumor activity compared to controls. Simultaneous and preferential in vivo delivery of rapamycin and paclitaxel to tumors yielded mechanistic insights into synergy involving suppression of feedback loop Akt phosphorylation and its downstream targets. Findings demonstrate that a same time, same place, and specific amount approach to combination chemotherapy by means of nanoparticle delivery has the potential to successfully translate in vitro synergistic findings in vivo. Predictive in vitro models can be used to determine optimum drug ratios for antitumor efficacy, while nanoparticle delivery of combination chemotherapies in preclinical animal models may lead to enhanced understanding of mechanisms of synergy, ultimately opening several avenues for personalized therapy.


Assuntos
Paclitaxel/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Animais/tratamento farmacológico , Camundongos , Camundongos Nus , Paclitaxel/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA