Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(9): 11435-11447, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195398

RESUMO

The ability to harness the catalytic oxidation of hydrocarbons is critical for both clean energy production and air pollutant elimination, which requires a detailed understanding of the dynamic role of the nanophase structure and surface reactivity under the reaction conditions. We report here findings of an in situ/operando study of such details of a ternary nanoalloy under the propane oxidation condition using high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The catalysts are derived by alloying Pt with different combinations of second (Pd) and third (Ni) transition metals, showing a strong dependence of the catalytic activity on the Ni content. The evolution of the phase structure of the nanoalloy is characterized by HE-XRD/PDF probing of the lattice strain, whereas the surface activity is monitored by DRIFTS detection of the surface intermediate formation during the oxidation of propane by oxygen. The results reveal the dominance of the surface intermediate species featuring a lower degree of oxygenation upon the first C-C bond cleavage on the lower-Ni-content nanoalloy and a higher degree of oxygenation upon the second C-C bond cleavage on the higher-Ni-content nanoalloy. The face-centered-cubic-type phase structures of the nanoalloys under the oxidation condition are shown to exhibit Ni-content-dependent changes of lattice strains, featuring the strongest strain with little variation for the higher-Ni-content nanoalloy, in contrast to the weaker strains with oscillatory variation for the lower-Ni-content nanoalloys. This process is also accompanied by oxygenation of the metal components in the nanoalloy, showing a higher degree of oxygenation for the higher-Ni-content nanoalloy. These subtle differences in phase structure and surface activity changes correlate with the Ni-composition-dependent catalytic activity of the nanoalloys, which sheds a fresh light on the correlation between the dynamic change of atomic strains and the surface reactivity and has significant implications for the design of oxidation catalysts with enhanced activities.

2.
ACS Appl Mater Interfaces ; 13(39): 46577-46587, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34570458

RESUMO

Understanding how the catalyst morphology influences surface sites is crucial for designing active and stable catalysts and electrocatalysts. We here report a new approach to this understanding by decorating gold (Au) nanoparticles on the surface of cuprous oxides (Cu2O) with three different shape morphologies (spheres, cubes, and petals). The Au-Cu2O particles are dispersed onto carbon nanotube (CNT) matrix with high surface area, stability, and conductivity for oxygen reduction reaction. A clear morphology-dependent enhancement of the electrocatalytic activity is revealed. Oxygenated gold species (AuO-) are found to coexist with Au0 on the cube and petal catalysts, whereas only Au0 species are present on the sphere catalyst. The AuO- species function effectively as active sites, resulting in the improved catalytic performance by changing the reaction mechanism. The enhanced catalytic performance of the petal-shaped catalyst in terms of onset potential, half-wave potential, diffusion-limited current density, and stability is closely associated with the presence of the most abundant AuO- species on its surface. Highly active AuO- species are identified on the surface of the catalysts as a result of the unique structural characteristics, which is attributed to the structural origin of high activity and stability. This insight constitutes the basis for assessing the detailed correlation between the morphology and the electrocatalytic properties of the nanocomposite catalysts, which has implications for the design of surface-active sites on metal/metal oxide electrocatalysts.

3.
Nat Commun ; 12(1): 859, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558516

RESUMO

Alloying noble metals with non-noble metals enables high activity while reducing the cost of electrocatalysts in fuel cells. However, under fuel cell operating conditions, state-of-the-art oxygen reduction reaction alloy catalysts either feature high atomic percentages of noble metals (>70%) with limited durability or show poor durability when lower percentages of noble metals (<50%) are used. Here, we demonstrate a highly-durable alloy catalyst derived by alloying PtPd (<50%) with 3d-transition metals (Cu, Ni or Co) in ternary compositions. The origin of the high durability is probed by in-situ/operando high-energy synchrotron X-ray diffraction coupled with pair distribution function analysis of atomic phase structures and strains, revealing an important role of realloying in the compressively-strained single-phase alloy state despite the occurrence of dealloying. The implication of the finding, a striking departure from previous perceptions of phase-segregated noble metal skin or complete dealloying of non-noble metals, is the fulfilling of the promise of alloy catalysts for mass commercialization of fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA