Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 1573, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091643

RESUMO

NbRe-based superconducting thin films recently received relevant interest in the field of low-temperature electronics. However, for these materials the electrical conduction mechanisms, in particular in the normal state, still need to be investigated in more detail. Here, NbRe and NbReN films of different thicknesses have been deposited on two different substrates, namely monocrystalline Si and [Formula: see text] buffered Si. The films were characterized by DC electrical transport measurements. Moreover, a connection with the charge carriers fluctuation processes has been made by analyzing the electrical noise generated in the normal state region. Despite the films morphology seems not to be affected by the substrate used, a lower noise level has been found for the ones grown on [Formula: see text], in particular for NbReN. From this study it emerges that both NbRe and NbReN ultrathin films are of very good quality, as far as the low-temperature electrical noise and conduction are concerned, with noise levels competitive with NbN. These results may further support the proposal of using these materials in a nanowire form in the field of superconducting electronics.

2.
Phys Chem Chem Phys ; 23(3): 2368-2376, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33449979

RESUMO

In the present study, the electrical resistivity (ρ) as a function of the temperature (T) has been measured in polycrystalline ZnO, Co-doped ZnO (ZCO) and H irradiated ZCO (HZCO) samples, in the 300-20 K range. The achieved results show impressive effects of Co doping and H irradiation on the ZnO transport properties. The Co dopant increases the ZnO resistivity at high T (HT), whereas it has an opposite effect at low T (LT). H balances the Co effects by neutralizing the ρ increase at HT and strengthening its decrease at LT. A careful analysis of the ρ data permits to identify two different thermally activated processes as those governing the charge transport in the three materials at HT and LT, respectively. The occurrence of such processes has been fully explained in terms of a previously proposed model based on an acceptor impurity band, induced by the formation of Co-oxygen vacancy complexes, as well as known effects produced by H on the ZnO properties. The same analysis shows that both Co and H reduce the effects of grain boundaries on the transport processes. The high conductivity of HZCO in the whole T-range and its low noise level resulting from electric noise spectroscopy make this material a very interesting one for technological applications.

3.
Sci Rep ; 6: 35694, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752137

RESUMO

Vortices are topological defects accounting for many important effects in superconductivity, superfluidity, and magnetism. Here we address the stability of a small number of such excitations driven by strong external forces. We focus on Abrikosov-Josephson vortex that appears in lateral superconducting S/S'/S weak links with suppressed superconductivity in S'. In such a system the vortex is nucleated and confined in the narrow S' region by means of a small magnetic field and moves under the effect of a force proportional to an applied electrical current with a velocity proportional to the measured voltage. Our numerical simulations show that when a slow moving Abrikosov-Josephson vortex is driven by a strong constant current it becomes unstable with respect to a faster moving excitation: the Josephon-like vortex. Such a current-driven transition explains the structured dissipative branches that we observe in the voltage-current curve of the weak link. When vortex matter is strongly confined phenomena as magnetoresistance oscillations and reentrance of superconductivity can possibly occur. We experimentally observe these phenomena in our weak links.

4.
Sci Rep ; 5: 10705, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26024506

RESUMO

Two-dimensional materials, such as graphene, topological insulators, and two-dimensional electron gases, represent a technological playground to develop coherent electronics. In these systems, quantum interference effects, and in particular weak localization, are likely to occur. These coherence effects are usually characterized by well-defined features in dc electrical transport, such as a resistivity increase and negative magnetoresistance below a crossover temperature. Recently, it has been shown that in magnetic and superconducting compounds, undergoing a weak-localization transition, a specific low-frequency 1/f noise occurs. An interpretation in terms of nonequilibrium universal conductance fluctuations has been given. The universality of this unusual electric noise mechanism has been here verified by detailed voltage-spectral density investigations on ultrathin copper films. The reported experimental results validate the proposed theoretical framework, and also provide an alternative methodology to detect weak-localization effects by using electric noise spectroscopy.

5.
J Phys Condens Matter ; 23(43): 435701, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21997140

RESUMO

We investigate the behaviour of a single Abrikosov vortex trapped in a mesoscopic superconducting cylindrical surface with a magnetic field applied transverse to its axis. In the framework of the time-dependent Ginzburg-Landau formalism we show that, provided the transport current and the magnetic field are not large, the vortex behaves as an overdamped quasi-particle in a tilted washboard potential. The cylindrical thin strip with the trapped vortex exhibits E(J) curves and time-dependent electric fields very similar to the ones exhibited by a resistively shunted Josephson weak link.


Assuntos
Nanotecnologia/métodos , Algoritmos , Simulação por Computador , Condutividade Elétrica , Eletricidade , Desenho de Equipamento , Modelos Estatísticos , Movimento (Física) , Nanoestruturas/química , Propriedades de Superfície
6.
Phys Rev Lett ; 87(7): 077002, 2001 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-11497909

RESUMO

We report the observation of the ratchet effect for a relativistic flux quantum trapped in an annular Josephson junction embedded in an inhomogeneous magnetic field. In such a solid state system, mechanical quantities are proportional to electrical quantities, so that the ratchet effect represents the realization of a relativistic-flux-quantum-based diode. Mean static voltage response, equivalent to directed fluxon motion, is experimentally demonstrated in such a diode for deterministic as well as stochastic oscillating current forcing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA