Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 18(4): 655-61, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20412779

RESUMO

Hox genes are essential for the patterning of the axial skeleton. Hox group 10 has been shown to specify the lumbar domain by setting a rib-inhibiting program in the presomitic mesoderm (PSM). We have now produced mice with ribs in every vertebra by ectopically expressing Hox group 6 in the PSM, indicating that Hox genes are also able to specify the thoracic domain. We show that the information provided by Hox genes to specify rib-containing and rib-less areas is first interpreted in the myotome through the regional-specific control of Myf5 and Myf6 expression. This information is then transmitted to the sclerotome by a system that includes FGF and PDGF signaling to produce vertebrae with or without ribs at different axial levels. Our findings offer a new perspective of how Hox genes produce global patterns in the axial skeleton and support a redundant nonmyogenic role of Myf5 and Myf6 in rib formation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Fator Regulador Miogênico 5/fisiologia , Fatores de Regulação Miogênica/fisiologia , Animais , Desenvolvimento Ósseo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Homeobox A10 , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Modelos Genéticos , Desenvolvimento Muscular , Fenótipo , Fator de Crescimento Derivado de Plaquetas/metabolismo
2.
Dev Cell ; 17(4): 516-26, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19853565

RESUMO

Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant phenotypes. Conversely, posterior (paralog group 13) Hox genes can prematurely arrest posterior axial growth when precociously expressed. Our data suggest that the transition from trunk to tail Hox gene expression successively regulates the construction and termination of axial structures in the mouse embryo. Thus, Hox genes seem to differentially orchestrate posterior expansion of embryonic tissues during axial morphogenesis as an integral part of their function in specifying head-to-tail identity. In addition, we present evidence that Cdx and Hox transcription factors exert these effects by controlling Wnt signaling. Concomitant regulation of Cyp26a1 expression, restraining retinoic acid signaling away from the posterior growth zone, may likewise play a role in timing the trunk-tail transition.


Assuntos
Padronização Corporal/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/fisiologia , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Antineoplásicos/farmacologia , Western Blotting , Fator de Transcrição CDX2 , Sistema Enzimático do Citocromo P-450/metabolismo , Extremidades/embriologia , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Retinoico 4 Hidroxilase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esqueleto , Tretinoína/farmacologia , Proteínas Wnt/metabolismo
3.
Int J Dev Biol ; 53(8-10): 1469-81, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19247958

RESUMO

In vertebrates, the paraxial mesoderm differentiates into several structures, including the axial skeleton. The genetic mechanisms that control positional information in the paraxial mesoderm along the anterior-posterior axis are responsible for the development of a skeleton with the appropriate vertebral formula, i.e. a specific number of cervical, thoracic, lumbar, sacral and caudal vertebrae. These control mechanisms are complex and involve molecules of different kinds, including transcription factors, like those encoded by the Hox genes, and signalling molecules, like those involved in Gdf11, FGF, retinoic acid or WNT signalling. Recent experiments indicate that most of the positional information for the paraxial mesoderm is encoded during the initial steps of its development in the presomitic mesoderm, although it is only decoded later during differentiation of the somites. The genesis of positional identity may be linked to the process of somitogenesis, which also occurs in the presomitic mesoderm as a result of complex interactions involving oscillatory activity of components of the Notch and WNT signalling pathways and antagonistic gradients of FGF/WNT and retinoic acid. The possible connections between Hox genes and all these signalling processes to generate a properly patterned axial skeleton are discussed in this review.


Assuntos
Padronização Corporal/fisiologia , Mesoderma/embriologia , Somitos/embriologia , Coluna Vertebral/embriologia , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Transdução de Sinais/genética , Somitos/metabolismo , Coluna Vertebral/metabolismo , Vertebrados/embriologia , Vertebrados/genética
4.
Genes Dev ; 19(18): 2116-21, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16166377

RESUMO

We show here that expression of Hoxa10 in the presomitic mesoderm is sufficient to confer a Hox group 10 patterning program to the somite, producing vertebrae without ribs, an effect not achieved when Hoxa10 is expressed in the somites. In addition, Hox group 11-dependent vertebral sacralization requires Hoxa11 expression in the presomitic mesoderm, while their caudal differentiation requires that Hoxa11 is expressed in the somites. Therefore, Hox gene patterning activity is different in the somites and presomitic mesoderm, the latter being very prominent for Hox gene-mediated patterning of the axial skeleton. This is further supported by our finding that inactivation of Gbx2, a homeobox-containing gene expressed in the presomitic mesoderm but not in the somites, produced Hox-like phenotypes in the axial skeleton without affecting Hox gene expression.


Assuntos
Genes Homeobox/genética , Mesoderma , Somitos/metabolismo , Coluna Vertebral/embriologia , Animais , Animais Recém-Nascidos , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Histocitoquímica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/isolamento & purificação , Hibridização In Situ , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Coluna Vertebral/anormalidades
5.
Development ; 130(15): 3403-14, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12810588

RESUMO

Hox genes are known key regulators of embryonic segmental identity, but little is known about the mechanisms of their action. To address this issue, we have analyzed how Hoxa2 specifies segmental identity in the second branchial arch. Using a subtraction approach, we found that Ptx1 was upregulated in the second arch mesenchyme of Hoxa2 mutants. This upregulation has functional significance because, in Hoxa2(-/-);Ptx1(-/-) embryos, the Hoxa2(-/-) phenotype is partially reversed. Hoxa2 interferes with the Ptx1 activating process, which is dependent on Fgf signals from the epithelium. Consistently, Lhx6, another target of Fgf8 signaling, is also upregulated in the Hoxa2(-/-) second arch mesenchyme. Our findings have important implications for the understanding of developmental processes in the branchial area and suggest a novel mechanism for mesenchymal patterning by Hox genes that acts to define the competence of mesenchymal cells to respond to skeletogenic signals.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Homeodomínio/metabolismo , Mesoderma/metabolismo , Proteínas do Tecido Nervoso , Fatores de Transcrição/metabolismo , Animais , Região Branquial/metabolismo , Fator 8 de Crescimento de Fibroblasto , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Proteínas com Homeodomínio LIM , Camundongos , Fatores de Transcrição Box Pareados , Fatores de Transcrição/genética , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA