Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 18(2): 874-880, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29272135

RESUMO

Nanothermometry is a challenging field that can open the door to intriguing questions ranging from biology and medicine to material sciences. Gold nanorods are excellent candidates to act as nanoprobes because they are reasonably bright emitters upon excitation with a monochromatic source. Gold nanoparticles are commonly used in photothermal therapy as efficient transducers of electromagnetic radiation into heat. In this work we use the spectrum of the anti-Stokes emission from gold nanorods irradiated in resonance to measure the absolute temperature of the nanoparticles and their surrounding medium without the need for a previous calibration. We show a 4 K accuracy in the determination of the temperature of the medium with spectral measurements of 180 s integration time. This procedure can be easily implemented in any microscope capable of acquiring emission spectra, and it is not limited to any specific shape of nanoparticles.

2.
Biophys J ; 111(11): 2492-2499, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27926850

RESUMO

Metallic nanoparticles have opened the possibility of imaging, tracking, and manipulating biological samples without time limitations. Their low photoluminescence quantum yield, however, makes them hard to detect under high background conditions. In this study we show that it is possible to image gold nanorods by detecting their anti-Stokes emission under resonant excitation. We show that even in the membrane of a cell containing the fluorescent dye Atto 647N, the signal/background of the anti-Stokes emission can be >10, while it is impossible to image the particles with the Stokes emission. The main advantage of this technique is that it does not require any major change in existing fluorescence imaging setups, only the addition of an appropriate short-pass filter in the detection path.


Assuntos
Ouro/química , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Nanotubos/química , Fluorescência , Ouro/metabolismo , Células HeLa , Humanos
3.
Phys Chem Chem Phys ; 18(23): 15619-24, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27221741

RESUMO

Single gold nanorods exhibit great opportunities for bio-sensing, enhanced spectroscopies and photothermal therapy. A key property of these particles is the surface plasmon resonance, that is strongly dependent on their shape. Methods for tuning this resonance after the synthesis of the particles are of great interest for many applications. In this work we show that, through very well known chemistry between gold atoms and cyanide ions, it is possible to tune the surface plasmon of single 25 × 50 nm rods by more than 100 nm towards longer wavelengths. This is achieved by slowly etching gold atoms from the surface of the particles, preserving their specific optical properties.

4.
J Phys Chem A ; 118(45): 10309-17, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24870555

RESUMO

We performed polarized fluorescence emission studies of Nile Red (NR) in poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), and poly(butyl methacrylate) (PBMA) at the single molecule (SM) and at the ensemble level to study the in cage movements of the ground-state molecule in polymer films of nanometric thickness at room temperature. Experiments were performed with wide field irradiation. At the ensemble level, the linearly polarized irradiation was used to induce a photoselection by bleaching, which is compensated by rotational diffusion. Both results show an appreciable difference in mobility of NR in the films that is correlated with the different glass-transition temperatures of the films, particularly in PEMA, which displays a clearly distinct behavior between the 200 nm films, representing a rigid environment, and the 25 nm ones, showing much higher mobility. We developed a model of broad application for polarized photobleaching that allows obtaining rotational diffusion coefficients and photobleaching quantum yields in an easy way from ensemble experiments. The parameters obtained from ensemble measurements correlate well with the results from SM experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA