Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19704, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952071

RESUMO

To understand the microbiome composition and interplay among bacterial communities in different compartments of a coupled freshwater aquaponics system growing flathead grey mullet (Mugil cephalus) and lettuces (Lactuca sativa), 16S rRNA gene amplicon sequencing of the V3-V4 region was analysed from each compartment (fish intestine, water from the sedimentation tank, bioballs from the biological filter, water and biofilm from the hydroponic unit, and lettuce roots). The bacterial communities of each sample group showed a stable diversity during all the trial, except for the fish gut microbiota, which displayed lower alpha diversity values. Regarding beta diversity, the structure of bacterial communities belonging to the biofilm adhering to the hydroponic tank walls, bioballs, and lettuce roots resembled each other (weighted and unweighted UniFrac distances), while bacteria from water samples also clustered together. However, both of the above-mentioned bacterial communities did not resemble those of fish gut. We found a low or almost null number of shared Amplicon Sequence Variants (ASVs) among sampled groups which indicated that each compartment worked as an independent microbiome. Regarding fish health and food safety, the microbiome profile did not reveal neither fish pathogens nor bacterial species potentially pathogenic for food health, highlighting the safety of this sustainable food production system.


Assuntos
Microbioma Gastrointestinal , Microbiota , Smegmamorpha , Animais , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Bactérias/genética , Microbiota/genética , Microbioma Gastrointestinal/genética , Peixes/genética , Smegmamorpha/genética , Água
2.
Animals (Basel) ; 13(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37893957

RESUMO

European eel (Anguilla anguilla) elvers (initial body weight (BW) = 3 g) were raised in triplicate for 60 days in a biofloc system (BFT) at 21 °C. Data from the current first study evaluating this farming technology indicated that European eel elvers adapted well to BFT systems as data on growth performance (specific growth rate = 1.48% ± 0.13 BW/day and FCR = 1.05 ± 0.09) indicated, with production costs using BFT being lower than conventional RAS units. The most critical issues associated with this aquaculture system were the maintenance of the biofloc in tanks by the regular addition of refined sugar (46% C) to keep a relationship for C:N of 20:1, and the prevention of emergence of opportunistic pathogens like the monogenean Pseudodactylogyrus sp. The overall results of this study in terms of elvers' performance and quality and the composition of the biofloc material and its microbial composition indicated that BFT, which is considered to be one of the most cost-effective, sustainable, and environmentally friendly farming systems due to its zero water exchange and improvement of feed conversion ratio by the dietary contribution of bioflocs, may be satisfactorily used for farming European eels elvers at a density of 2 kg/m3. However, further studies are needed to test this technology with older eel stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA