RESUMO
Oxalate oxidases (OxO) catalyse the degradation of oxalic acid (OA). Highly resistant transgenic soybean carrying an OxO gene and its susceptible parent soybean line, AC Colibri, were tested for genome-wide gene expression in response to the necrotrophic, OA-producing pathogen Sclerotinia sclerotiorum using soybean cDNA microarrays. The genes with changed expression at statistically significant levels (overall F-test P-value cut-off of 0.0001) were classified into functional categories and pathways, and were analysed to evaluate the differences in transcriptome profiles. Although many genes and pathways were found to be similarly activated or repressed in both genotypes after inoculation with S. sclerotiorum, the OxO genotype displayed a measurably faster induction of basal defence responses, as observed by the differential changes in defence-related and secondary metabolite genes compared with its susceptible parent AC Colibri. In addition, the experiment presented provides data on several other transcripts that support the hypothesis that S. sclerotiorum at least partially elicits the hypersensitive response, induces lignin synthesis (cinnamoyl CoA reductase) and elicits as yet unstudied signalling pathways (G-protein-coupled receptor and related). Of the nine genes showing the most extreme opposite directions of expression between genotypes, eight were related to photosynthesis and/or oxidation, highlighting the importance of redox in the control of this pathogen.
Assuntos
Ascomicetos/patogenicidade , Glycine max/genética , Glycine max/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sequência de Bases , DNA de Plantas/genética , Resistência à Doença/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Lignina/genética , Lignina/metabolismo , Dados de Sequência Molecular , Oxalatos , Oxirredutases/genética , Oxirredutases/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Glycine max/metabolismo , TranscriptomaRESUMO
Two Solanum genotypes, a wild relative of cultivated potato S. cajamarquense (Cjm) and an advanced tetraploid clone B3C1 (B3), were inoculated with two Phytophthora infestans isolates and leaves were sampled at 72 and 96 h after inoculation. Gene expression in the inoculated versus noninoculated samples was monitored using the Institute of Genomic Research (TIGR) 10K potato array and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The current experiment is study number 83 of the TIGR expression profiling service project, and all data are publicly available in the Solanaceae Gene Expression Database (SGED) at ftp://ftp.tigr.org/pub/data/s_tuberosum/SGED. Differentially regulated cDNA clones were selected separately for each isolate-time point interaction by significant analysis of microarray (SAM), and differentially regulated clones were classified into functional categories by MapMan. The results show that the genes activated in B3 and Cjm have largely the same biological functions and are commonly activated when plants respond to pathogen attack. The genes activated within biological function categories were considerably different between the genotypes studied, suggesting that the defence pathways activated in B3 and Cjm during the tested conditions may involve unique genes. However, as indicated by real-time RT-PCR, some of the genes thought to be genotype specific may be activated across genotypes at other time points during disease development.
Assuntos
Phytophthora infestans/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Solanum/genética , Solanum/microbiologia , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Responses to prolonged drought and recovery from drought of two South American potato (Solanum tuberosum L. ssp. andigena (Juz & Buk) Hawkes) landraces, Sullu and Ccompis were compared under field conditions. Physiological and biomass measurements, yield analysis, the results of hybridisation to a potato microarray platform (44 000 probes) and metabolite profiling were used to characterise responses to water deficit. Drought affected shoot and root biomass negatively in Ccompis but not in Sullu, whereas both genotypes maintained tuber yield under water stress. Ccompis showed stronger reduction in maximum quantum yield under stress than Sullu, and less decrease in stomatal resistance. Genes associated with PSII functions were activated during recovery in Sullu only. Evidence for sucrose accumulation in Sullu only during maximum stress and recovery was observed, in addition to increases in cell wall biosynthesis. A depression in the abundance of plastid superoxide dismutase transcripts was observed under maximum stress in Ccompis. Both sucrose and the regulatory molecule trehalose accumulated in the leaves of Sullu only. In contrast, in Ccompis, the raffinose oligosaccharide family pathway was activated, whereas low levels of sucrose and minor stress-mediated changes in trehalose were observed. Proline, and expression of the associated genes, rose in both genotypes under drought, with a 3-fold higher increase in Sullu than in Ccompis. The results demonstrate the presence of distinct molecular and biochemical drought responses in the two potato landraces leading to yield maintenance but differential biomass accumulation in vegetative tissues.