Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genes (Basel) ; 14(6)2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37372430

RESUMO

The likelihood of being diagnosed with thyroid cancer has increased in recent years; it is the fastest-expanding cancer in the United States and it has tripled in the last three decades. In particular, Papillary Thyroid Carcinoma (PTC) is the most common type of cancer affecting the thyroid. It is a slow-growing cancer and, thus, it can usually be cured. However, given the worrying increase in the diagnosis of this type of cancer, the discovery of new genetic markers for accurate treatment and prognostic is crucial. In the present study, the aim is to identify putative genes that may be specifically relevant in PTC through bioinformatic analysis of several gene expression public datasets and clinical information. Two datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) dataset were studied. Statistics and machine learning methods were sequentially employed to retrieve a final small cluster of genes of interest: PTGFR, ZMAT3, GABRB2, and DPP6. Kaplan-Meier plots were employed to assess the expression levels regarding overall survival and relapse-free survival. Furthermore, a manual bibliographic search for each gene was carried out, and a Protein-Protein Interaction (PPI) network was built to verify existing associations among them, followed by a new enrichment analysis. The results revealed that all the genes are highly relevant in the context of thyroid cancer and, more particularly interesting, PTGFR and DPP6 have not yet been associated with the disease up to date, thus making them worthy of further investigation as to their relationship to PTC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/metabolismo , Recidiva Local de Neoplasia/genética , Neoplasias da Glândula Tireoide/patologia , Biologia Computacional , Expressão Gênica
2.
Antioxidants (Basel) ; 11(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290800

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a remarkably heterogeneous disease with around 50% mortality, a fact that has prompted researchers to try new approaches to improve patient survival. Hemoxygenase-1 (HO-1) is the rate-limiting step for heme degradation into carbon monoxide, free iron and biliverdin. We have previously reported that HO-1 protein is upregulated in human HNSCC samples and that it is localized in the cytoplasmic and nuclear compartments; additionally, we have demonstrated that HO-1 nuclear localization is associated with malignant progression. In this work, by using pharmacological and genetic experimental approaches, we begin to elucidate the mechanisms through which HO-1 plays a role in HNSCC. We found that high HO-1 mRNA was associated with decreased patient survival in early stages of HNSCC. In vitro experiments have shown that full-length HO-1 localizes in the cytoplasm, and that, depending on its enzymatic activity, it increases cell viability and promotes cell cycle progression. Instead, HO-1 does not alter migration capacity. Furthermore, we show that C-terminal truncated HO-1 localizes into the nucleus, increases cell viability and promotes cell cycle progression. In conclusion, we herein demonstrate that HO-1 displays protumor activities in HNSCC that depend, at least in part, on the nuclear localization of HO-1.

3.
Evol Bioinform Online ; 12: 247-251, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812277

RESUMO

The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka.

4.
Biosystems ; 150: 1-12, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27521767

RESUMO

Detection of crosstalks among pathways is a challenging task, which requires the identification of different types of interactions associated with cellular processes. A common strategy used in bioinformatics consists in extrapolating pathway associations from the pairwise analysis of some genes related to them, using gene expression data and topological information. PET, the method proposed in this paper, goes a step further by incorporating a strategy for the detection of correlation across conditions between differentially expressed genes based on biclustering analysis. In order to evaluate the performance of this new approach, a comparison with two recently published algorithms was carried out. The methods were contrasted in the inference of pathway associations from Alzheimer disease datasets, where the new proposal presents a higher crosstalk discoveries' rate. Finally, the analysis of the biological relevance of the pathway associations inferred by PET has shown the soundness of the extracted knowledge.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Algoritmos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Análise por Conglomerados , Humanos
5.
Brief Bioinform ; 17(5): 758-70, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26438418

RESUMO

Gene expression measurements represent the most important source of biological data used to unveil the interaction and functionality of genes. In this regard, several data mining and machine learning algorithms have been proposed that require, in a number of cases, some kind of data discretization to perform the inference. Selection of an appropriate discretization process has a major impact on the design and outcome of the inference algorithms, as there are a number of relevant issues that need to be considered. This study presents a revision of the current state-of-the-art discretization techniques, together with the key subjects that need to be considered when designing or selecting a discretization approach for gene expression data.


Assuntos
Expressão Gênica , Algoritmos , Mineração de Dados , Perfilação da Expressão Gênica
6.
BMC Bioinformatics ; 12: 123, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21524308

RESUMO

BACKGROUND: Gene regulatory networks have an essential role in every process of life. In this regard, the amount of genome-wide time series data is becoming increasingly available, providing the opportunity to discover the time-delayed gene regulatory networks that govern the majority of these molecular processes. RESULTS: This paper aims at reconstructing gene regulatory networks from multiple genome-wide microarray time series datasets. In this sense, a new model-free algorithm called GRNCOP2 (Gene Regulatory Network inference by Combinatorial OPtimization 2), which is a significant evolution of the GRNCOP algorithm, was developed using combinatorial optimization of gene profile classifiers. The method is capable of inferring potential time-delay relationships with any span of time between genes from various time series datasets given as input. The proposed algorithm was applied to time series data composed of twenty yeast genes that are highly relevant for the cell-cycle study, and the results were compared against several related approaches. The outcomes have shown that GRNCOP2 outperforms the contrasted methods in terms of the proposed metrics, and that the results are consistent with previous biological knowledge. Additionally, a genome-wide study on multiple publicly available time series data was performed. In this case, the experimentation has exhibited the soundness and scalability of the new method which inferred highly-related statistically-significant gene associations. CONCLUSIONS: A novel method for inferring time-delayed gene regulatory networks from genome-wide time series datasets is proposed in this paper. The method was carefully validated with several publicly available data sets. The results have demonstrated that the algorithm constitutes a usable model-free approach capable of predicting meaningful relationships between genes, revealing the time-trends of gene regulation.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Saccharomyces cerevisiae/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA