Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023276

RESUMO

It has recently been demonstrated that aqueous lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium chloride (LiCl) solutions can form stable liquid-liquid biphasic systems when both electrolyte phases have sufficiently high concentrations. In this work, we combine molecular dynamics simulations and experimental analysis to investigate what drives the formation of the interface and how the interfacial molecular structure correlates with its thermodynamic stability. We observe that at the liquid-vapour interface, TFSI- anions exhibit surfactant-like properties, leading to a reduction in surface tension and an increase in interfacial thickness. In contrast, the interfacial stability of the LiTFSI-LiCl biphasic systems increases with the concentration of both salts, as evidenced by the increasing surface tension and decreasing interfacial thickness. The opposing effects that the ionic concentration has on the thermodynamic stability of the different interfaces are linked to the anions' interfacial adsorption/desorption, which in turn affects the number and strength of water-water hydrogen bonds, the interfacial molecular structure and the diffusion of cations across the interface. Finally, calculations and experiments indicate that the liquid-liquid separation is driven primarily by the concentration of LiCl, and is the result of a 'salting out' effect.

2.
Macromolecules ; 57(10): 4637-4647, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38827962

RESUMO

Polymer composite materials require softening to reduce their glass transition temperature and improve processability. To this end, plasticizers (PLs), which are small organic molecules, are added to the polymer matrix. The miscibility of these PLs has a large impact on their effectiveness and, therefore, their interactions with the polymer matrix must be carefully considered. Many PL characteristics, including their size, topology, and flexibility, can impact their miscibility and, because of the exponentially large number of PLs, the current trial-and-error approach is very ineffective. In this work, we show that using coarse-grained molecular simulations of a small dataset of 48 PLs, it is possible to identify topological and thermodynamic descriptors that are proxy for their miscibility. Using ad-hoc molecular dynamics simulation setups that are relatively computationally inexpensive, we establish correlations between the PLs' topology, internal flexibility, thermodynamics of aggregation, and degree of miscibility, and use these descriptors to classify the molecules as miscible or immiscible. With all available data, we also construct a decision tree model, which achieves a F1 score of 0.86 ± 0.01 with repeated, stratified 5-fold cross-validation, indicating that this machine learning method can be a promising route to fully automate the screening. By evaluating the individual performance of the descriptors, we show this procedure enables a 10-fold reduction of the test space and provides the basis for the development of workflows that can efficiently screen PLs with a variety of topological features. The approach is used here to screen for apolar PLs in polyisoprene melts, but similar proxies would be valid for other polyolefins, while, in cases where polar interactions drive the miscibility, other descriptors are likely to be needed.

3.
J Am Chem Soc ; 146(1): 760-772, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153698

RESUMO

Deciphering the mechanisms of charge storage on carbon-based materials is pivotal for the development of next-generation electrochemical energy storage systems. Graphene, the building block of graphitic electrodes, is an ideal model for probing such processes on a fundamental level. Herein, we investigate the thermodynamics of the graphene/aqueous electrolyte interface by utilizing a multiscale quantum mechanics-classical molecular dynamics (QM/MD) approach to provide insights into the effect of alkali metal ion (Li+) concentration on the interfacial tension (γSL) of the charged graphene/electrolyte interface. We demonstrate that the dependence of γSL on the applied surface charge exhibits an asymmetric behavior relative to the neutral surface. At the positively charged graphene sheet, the electrowetting response is amplified by electrolyte concentration, resulting in a strongly hydrophilic surface. On the contrary, at negative potential bias, γSL shows a weaker response to the charging of the electrode. Changes in γSL greatly affect the total areal capacitance predicted by the Young-Lippmann equation but have a negligible impact on the simulated total areal capacitance, indicating that the EDL structure is not directly correlated with the wettability of the surface and different interfacial mechanisms drive the two phenomena. The proposed model is validated experimentally by studying the electrowetting response of highly oriented pyrolytic graphite over a wide range of electrolyte concentrations. Our work presents the first combined theoretical and experimental study on electrowetting using carbon surfaces, introducing new conceptual routes for the investigation of wetting phenomena under potential bias.

4.
ACS Nano ; 17(21): 21923-21934, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37917940

RESUMO

Graphene oxide (GO) membranes are known to have a complex morphology that depends on the degree of oxidation of the graphene flake and the membrane preparation technique. In this study, using Grand Canonical Monte Carlo simulations, we investigate the mechanism of swelling of GO membranes exposed to different relative humidity (RH) values and show how this is intimately related to the graphene surface chemistry. We show that the structure of the GO membrane changes while the membrane adsorbs water from the environment and that graphene oxide flakes become charged as the membrane is loaded with water and swells. A detailed comparison between simulation and experimental adsorption data reveals that the flake surface charge drives the water adsorption mechanism at low RH when the membrane topology is still disordered and the internal pores are small and asymmetric. As the membrane is exposed to higher RH (80%), the flake acquires more surface charge as more oxide groups deprotonate, and the pores grow in size, yet maintain their disordered geometry. Only for very high relative humidity (98%) does the membrane undergo structural changes. At this level of humidity, the pores in the membrane become slit-like but the flake surface charge remains constant. Our results unveil a very complex mechanism of swelling and show that a single molecular model cannot fully capture the ever-changing chemistry and morphology of the membrane as it swells. Our computational procedure provides the first atomically resolved insight into the GO membrane structure of experimental samples.

5.
Phys Chem Chem Phys ; 25(32): 21416-21427, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534596

RESUMO

Heterogenisation of homogeneous catalysts onto solid supports represents a potential strategy to make the homogeneous catalytic function recyclable and reuseable. Yet, it is usually the case that immobilised catalysts have much lower catalytic activity than their homogeneous counterpart. In addition, the presence of a solid interface introduces a higher degree of complexity by modulating solid/fluid interactions, which can often influence adsorption properties of solvents and reactive species and, ultimately, catalytic activity. In this work, the influence of support and solvent in the H-transfer reduction of propionaldehyde over Al(OiPr)3-SiO2, Al(OiPr)3-TiO2 and Al(OiPr)3-Al2O3 heterogenised catalysts has been studied. Reaction studies are coupled with both NMR relaxation measurements as well as molecular dynamics (MD) simulations in order to unravel surface and solvation effects during the reaction. The results show that, whilst the choice of the support does not influence significantly catalytic activity, reactions carried out in solvents with high affinity for the catalyst surface, or able to hinder access to active sites due to solvation effects, have a lower activity. MD calculations provide key insights into bulk solvation effects involved in such reactions, which are thought to play an important role in determining the catalytic behaviour. The activity of the heterogenised catalysts was found to be comparable with that of the homogeneous Al(OiPr)3 catalysts for all supports used, showing that for the type of reaction studied immobilisation of the homogeneous catalyst onto solid supports is a viable, robust and effective strategy.

6.
J Mater Chem C Mater ; 11(24): 8062-8073, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37362027

RESUMO

In organic polymeric materials with mixed ionic and electronic conduction (OMIEC), the excess charge in doped polymers is very mobile and the dynamics of the polymer chain cannot be accurately described with a model including only fixed point charges. Ions and polymer are comparatively slower and a methodology to capture the correlated motions of excess charge and ions is currently unavailable. Considering a prototypical interface encountered in this type of materials, we constructed a scheme based on the combination of MD and QM/MM to evaluate the classical dynamics of polymer, water and ions, while allowing the excess charge of the polymer chains to rearrange following the external electrostatic potential. We find that the location of the excess charge varies substantially between chains. The excess charge changes across multiple timescales as a result of fast structural fluctuations and slow rearrangement of the polymeric chains. Our results indicate that such effects are likely important to describe the phenomenology of OMIEC, but additional features should be added to the model to enable the study of processes such as electrochemical doping.

7.
J Chem Phys ; 158(13): 134714, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031135

RESUMO

We present the coupling of two frameworks-the pseudo-open boundary simulation method known as constant potential molecular dynamics simulations (CµMD), combined with quantum mechanics/molecular dynamics (QMMD) calculations-to describe the properties of graphene electrodes in contact with electrolytes. The resulting CµQMMD model was then applied to three ionic solutions (LiCl, NaCl, and KCl in water) at bulk solution concentrations ranging from 0.5 M to 6 M in contact with a charged graphene electrode. The new approach we are describing here provides a simulation protocol to control the concentration of electrolyte solutions while including the effects of a fully polarizable electrode surface. Thanks to this coupling, we are able to accurately model both the electrode and solution side of the double layer and provide a thorough analysis of the properties of electrolytes at charged interfaces, such as the screening ability of the electrolyte and the electrostatic potential profile. We also report the calculation of the integral electrochemical double layer capacitance in the whole range of concentrations analyzed for each ionic species, while the quantum mechanical simulations provide access to the differential and integral quantum capacitance. We highlight how subtle features, such as the adsorption of potassium graphene or the tendency of the ions to form clusters contribute to the ability of graphene to store charge, and suggest implications for desalination.

8.
Soft Matter ; 19(13): 2377-2384, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920461

RESUMO

Plasticisers are small organic molecules routinely added to polymer composites that modify the processability of the compounds by adsorbing on the filler's surface or dispersing into the polymer matrix. Here using a simple yet chemically specific coarse-grained model, we demonstrate that the filler surface coverage and the degree of dispersion into the polymer matrix can be tuned without modifying the chemistry of the plasticisers but only by varying their conformational flexibility. We show that when the adsorption mechanism and clustering into the bulk are entropically driven as in this work, this is a general phenomenon independent on the polymer chemistry and its molecular weight. Our findings suggest a simple practical design rule that requires only minor modifications of the plasticisers' chemistry to achieve maximum adsorption onto the filler surface or dispersion into the polymer matrix.

9.
Mol Syst Des Eng ; 7(3): 294-305, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35646391

RESUMO

Decades of work in the field of computational study of semiconducting polymers using atomistic models illustrate the challenges of generating equilibrated models for this class of materials. While adopting a coarse-grained model can be helpful, the process of developing a suitable model is particularly non-trivial and time-consuming for semiconducting polymers due to a large number of different interactions with some having an anisotropic nature. This work introduces a procedure for the rapid generation of a hybrid model for semiconducting polymers where atoms of secondary importance (those in the alkyl side chains) are transformed into coarse-grained beads to reduce the computational cost of generating an equilibrated structure. The parameters are determined from easy-to-equilibrate simulations of very short oligomers and the model is constructed to enable a very simple back-mapping procedure to reconstruct geometries with atomistic resolution. The model is illustrated for three related polymers containing DPP (diketopyrrolopyrrole) to evaluate the transferability of the potential across different families of polymers. The accuracy of the model, determined by comparison with the results of fully equilibrated simulations of the same material before and after back-mapping, is fully satisfactory for two out of the three cases considered. We noticed that accuracy can be determined very early in the workflow so that it is easy to assess when the deployment of this method is advantageous. The hybrid representation can be used to evaluate directly the electronic properties of structures sampled by the simulations.

10.
Phys Chem Chem Phys ; 24(19): 11992-12001, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35532223

RESUMO

The homogeneous covering of amphiphillic polymer molecules onto metallic surfaces is of great importance for corrosion inhibitor applications. Lyophillic side chains grafted onto a lyophobic backbone act as anchors that allow the molecule to absorb at the metallic surface preventing the exposure with the solvent. Coarse-grained simulations are used to study the sorption and conformation behaviour of amphiphillic grafted polymers for corrosion inhibition. The backbone insolubility is found to play a key role in the sorption and conformation behaviour in the dilute limit. For finite concentrations, moderate backbone solubility and moderate molecule concentrations achieve optimal surface coverage, while highly a lyophobic backbone leads to bulk-like structures as a consequence of aggregation.


Assuntos
Polímeros , Adsorção , Corrosão , Conformação Molecular , Polímeros/química , Solventes/química
11.
Nanoscale ; 14(9): 3467-3479, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170614

RESUMO

Graphene-based nanochannels are a popular choice in emerging nanofluidics applications because of their tunable and nanometer-scale channels. In this work, molecular dynamics (MD) simulations were employed both to (i) assess the stability of dry and hydrated graphene nanochannels and (ii) elucidate the properties of water confined in these channels, using replica-scale models with 0.66-2.38 nm channel heights. The use of flexible nanochannel walls allows the nanochannel height to relax in response to the solvation forces arising from the confined fluid and the forces between the confining surfaces, without the need for application of arbitrarily high external pressures. Dry nanochannels were found to completely collapse if the initial nanochannel height was less than 2 nm, due to attractive van der Waals interactions between the confining graphene surfaces. However, the presence of water was found to prevent total nanochannel collapse, due to repulsive hydration forces opposing the attractive van der Waals force. For nanochannel heights less than ∼1.7 nm, the confining surfaces must be relaxed to obtain accurate hydration pressures and water diffusion coefficients, by ensuring commensurability between the number of confined water layers and the channel height. For very small (∼0.7 nm), hydrated channels a pressure of 231 MPa due to the van der Waals forces was obtained. In the same system, the confined water forms a mobile, liquid monolayer with a diffusion coefficient of 4.0 × 10-5 cm2 s-1, much higher than bulk liquid water. Although this finding conflicts with most classical MD simulations, which predict in-plane order and arrested dynamics, it is supported by experiments and recently published first-principles MD simulations. Classical simulations can therefore be used to predict the properties of water confined in sub-nanometre graphene channels, providing sufficiently realistic molecular models and accurate intermolecular potentials are employed.

13.
Soft Matter ; 17(36): 8343-8353, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550156

RESUMO

Dissipative Particle Dynamics (DPD) is a powerful mesoscopic modelling technique that is routinely used to predict complex fluid morphology and structural properties. While its ability to quickly scan the conformational space is well known, it is unclear if DPD can correctly calculate the viscosity of complex fluids. In this work, we estimate the viscosity of several unentangled polymer solutions using both the Einstein and Green-Kubo formulas. For this purpose, an Einstein relation is derived analogous to the revised Green-Kubo formula suggested by Jung and Schmid, J. Chem. Phys., 2016, 144, 204104. We show that the DPD simulations reproduce the dynamical behaviour predicted by the theory irrespectively of the values of the conservative and friction parameters used and estimate a Schmidt number compatible to that of a fluid system. Moreover, we observe that the Einstein method requires shorter trajectories to achieve the same statistical accuracy as the Green-Kubo formula. This work shows that DPD can confidently be used to calculate the viscosity of complex fluids and that the statistical accuracy of short trajectories can be improved by using our revised Einstein formula.

14.
Nanoscale ; 13(32): 13693-13702, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477644

RESUMO

Graphene oxide (GO) membranes are highly touted as materials for contemporary separation challenges including desalination, yet understanding of the interplay between their structure and salt rejection is limited. K+ ion permeation through hydrated GO membranes was investigated by combining structurally realistic molecular models and high-throughput molecular dynamics simulations. We show that it is essential to consider the complex GO microstructure to quantitatively reproduce experimentally-derived free energy barriers to K+ permeation for membranes with various interlayer distances less than 1.3 nm. This finding confirms the non-uniformity of GO nanopores and the necessity of the high-throughput approach for this class of material. The large barriers arise due to significant dehydration of K+ inside the membrane, which can have as few as 3 coordinated water molecules, compared to 7 in bulk solution. Thus, even if the membranes have an average pore size larger than the ion's hydrated diameter, the significant presence of pores whose size is smaller than the hydrated diameter creates bottlenecks for the permeation process.

15.
J Chem Theory Comput ; 17(7): 4477-4485, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34197102

RESUMO

We present a general procedure to introduce electronic polarization into classical Molecular Dynamics (MD) force fields using a Neural Network (NN) model. We apply this framework to the simulation of a solid-liquid interface where the polarization of the surface is essential to correctly capture the main features of the system. By introducing a multi-input, multi-output NN and treating the surface polarization as a discrete classification problem, we are able to obtain very good accuracy in terms of quality of predictions. Through the definition of a custom loss function we are able to impose a physically motivated constraint within the NN itself making this model extremely versatile, especially in the modeling of different surface charge states. The NN is validated considering the redistribution of electronic charge density within a graphene based electrode in contact with an aqueous electrolyte solution, a system highly relevant to the development of next generation low-cost supercapacitors. We compare the performances of our NN/MD model against Quantum Mechanics/Molecular Dynamics simulations where we obtain a most satisfactory agreement.

16.
Behav Sci (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063788

RESUMO

International literature has shown that adolescents represent the population most at risk of fatal and nonfatal motor vehicle collisions (MVCs). Adolescents' alexithymic traits and significant use of immature defense strategies have been seen to play a key role. This study aimed to investigate the possible mediation role played by defense strategies use in the relationship between alexithymia and MVCs. Our sample consisted of 297 adolescents divided into four subgroups, based on the number of visits to the emergency department due to an MVC. We assessed adolescents' alexithymic traits and defense strategies use through self-report instruments. Results showed that males reported a higher rate of MVCs than females. Higher rates of MVCs are associated with more alexithymic traits and maladaptive defense strategies use. Adolescents' Acting Out and Omnipotence use significantly mediated the relationship between alexithymia and MVCs. Our findings suggest the recidivism of MVCs as an attempt to cope with emotional difficulties, with important clinical implications.

17.
Phys Chem Chem Phys ; 23(10): 5999-6008, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33666607

RESUMO

Decoding behavioral aspects associated with the water molecules in confined spaces such as an interlayer space of two-dimensional nanosheets is key for the fundamental understanding of water-matter interactions and identifying unexpected phenomena of water molecules in chemistry and physics. Although numerous studies have been conducted on the behavior of water molecules in confined spaces, their reach stops at the properties of the planar ice-like formation, where van der Waals interactions are the predominant interactions and many questions on the confined space such as the possibility of electron exchange and excitation state remain unsettled. We used density functional theory and reactive molecular dynamics to reveal orbital overlap and induction bonding between water molecules and graphene sheets under much less pressure than graphene fractures. Our study demonstrates high amounts of charge being transferred between water and the graphene sheets, as the interlayer space becomes smaller. As a result, the inner face of the graphene nanosheets is functionalized with hydroxyl and epoxy functional groups while released hydrogen in the form of protons either stays still or traverses a short distance inside the confined space via the Grotthuss mechanism. We found signatures of a new hydrolysis mechanism in the water molecules, i.e. mechanical hydrolysis, presumably responsible for relieving water from extremely confined conditions. This phenomenon where water reacts under extreme confinement by disintegration rather than forming ice-like structures is observed for the first time, illustrating the prospect of treating ultrafine porous nanostructures as a driver for water splitting and material functionalization, potentially impacting the modern design of nanofilters, nanochannels, nano-capacitators, sensors, and so on.

18.
Langmuir ; 36(41): 12288-12298, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32988195

RESUMO

The scission energy is the difference in free energy between two hemispherical caps and the cylindrical region of a wormlike micelle. This energy difference determines the logarithm of the average micelle length, which affects several macroscopic properties such as the viscosity of viscoelastic fluids. Here we use a recently published method by Wang et al. ( Langmuir, 2018, 34, 1564-1573) to directly calculate the scission energy of micelles composed of monodisperse sodium lauryl ether sulfate (SLESnEO), an anionic surfactant. Utilizing dissipative particle dynamics (DPD), we perform a systematic study varying the number of ethoxyl groups (n) and salt concentration. The scission energy increases with increasing salt concentration, indicating that the formation of longer micelles is favored. We attribute this to the increased charge screening that reduces the repulsion between head groups. However, the scission energy decreases with increasing number of ethoxyl groups as the flexibility of the head group increases and the sodium ion becomes less tightly bound to the head group. We then extend the analysis to look at the effect of a common cosurfactant, cocamidopropyl betaine (CAPB), and find that its addition stabilizes wormlike micelles at a lower salt concentration.

19.
J Chem Theory Comput ; 16(8): 5253-5263, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32644791

RESUMO

We report a new Quantum Mechanical/Molecular Dynamics (QM/MD) simulation loop to model the coupling between the electron and atom dynamics in solid/liquid interfacial systems. The method can describe simultaneously both the quantum mechanical surface polarizability emerging from the proximity to the electrolyte and the electrolyte structure and dynamics. In the current setup, Density Functional Tight Binding calculations for the electronic structure calculations of the surface are coupled with classical molecular dynamics to simulate the electrolyte solution. The reduced computational cost of the QM part makes the coupling with a classical simulation engine computationally feasible and allows simulation of large systems for hundreds of nanoseconds. We tested the method by simulating both a noncharged graphene flake and a noncharged and charged infinite graphene sheet immersed in an NaCl electrolyte solution. We found that, when no bias is applied, ions preferentially remained in solution, and only cations are mildly attracted to the surface of the graphene. This preferential adsorption of cations vs anions seems to persist also when the surface is moderately charged and rules out any substantial ions/surface charge transfer.

20.
J Phys Chem B ; 124(22): 4487-4497, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32390430

RESUMO

Polyhexamethylene biguanide (PHMB) is a cationic polymer with antimicrobial and antiviral properties. It has been commonly accepted that the antimicrobial activity is due to the ability of PHMB to perforate the bacterial phospholipid membrane leading ultimately to its death. In this study, we show by the means of atomistic molecular dynamics (MD) simulations that, while the PHMB molecules attach to the surface of the phospholipid bilayer and partially penetrate it, they do not cause any pore formation at least within the microsecond simulation times. The polymers initially adsorb onto the membrane surface via the favorable electrostatic interactions between the phospholipid headgroups and the biguanide groups and then partially penetrate the membrane slightly disrupting its structure. This, however, does not lead to the formation of any pores. The microsecond-scale simulations reveal that it is unlikely for PHMB to spontaneously pass through the phospholipid membrane. Our findings suggest that PHMB translocation across the bilayer may take place through binding to the phospholipids. Once inside the cell, the polymer can effectively "bind" to DNA through extensive interactions with DNA phosphate backbone, which can potentially block the DNA replication process or activate DNA repair pathways.


Assuntos
Anti-Infecciosos , Simulação de Dinâmica Molecular , Biguanidas/farmacologia , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA