Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Med ; 21(4): e1004387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630802

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS: COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Vacinação , Humanos , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Estados Unidos/epidemiologia , Idoso , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Idoso de 80 Anos ou mais , Masculino
2.
Epidemics ; 47: 100753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492544

RESUMO

The COVID-19 pandemic led to an unprecedented demand for projections of disease burden and healthcare utilization under scenarios ranging from unmitigated spread to strict social distancing policies. In response, members of the Johns Hopkins Infectious Disease Dynamics Group developed flepiMoP (formerly called the COVID Scenario Modeling Pipeline), a comprehensive open-source software pipeline designed for creating and simulating compartmental models of infectious disease transmission and inferring parameters through these models. The framework has been used extensively to produce short-term forecasts and longer-term scenario projections of COVID-19 at the state and county level in the US, for COVID-19 in other countries at various geographic scales, and more recently for seasonal influenza. In this paper, we highlight how the flepiMoP has evolved throughout the COVID-19 pandemic to address changing epidemiological dynamics, new interventions, and shifts in policy-relevant model outputs. As the framework has reached a mature state, we provide a detailed overview of flepiMoP's key features and remaining limitations, thereby distributing flepiMoP and its documentation as a flexible and powerful tool for researchers and public health professionals to rapidly build and deploy large-scale complex infectious disease models for any pathogen and demographic setup.


Assuntos
COVID-19 , SARS-CoV-2 , Software , Humanos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Modelos Epidemiológicos
3.
Epidemics ; 46: 100738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184954

RESUMO

Between December 2020 and April 2023, the COVID-19 Scenario Modeling Hub (SMH) generated operational multi-month projections of COVID-19 burden in the US to guide pandemic planning and decision-making in the context of high uncertainty. This effort was born out of an attempt to coordinate, synthesize and effectively use the unprecedented amount of predictive modeling that emerged throughout the COVID-19 pandemic. Here we describe the history of this massive collective research effort, the process of convening and maintaining an open modeling hub active over multiple years, and attempt to provide a blueprint for future efforts. We detail the process of generating 17 rounds of scenarios and projections at different stages of the COVID-19 pandemic, and disseminating results to the public health community and lay public. We also highlight how SMH was expanded to generate influenza projections during the 2022-23 season. We identify key impacts of SMH results on public health and draw lessons to improve future collaborative modeling efforts, research on scenario projections, and the interface between models and policy.


Assuntos
COVID-19 , Influenza Humana , Humanos , COVID-19/epidemiologia , Influenza Humana/epidemiologia , Pandemias , Políticas , Saúde Pública
4.
medRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37961207

RESUMO

Importance: COVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Objective: To project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). Design: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. Setting: The entire United States. Participants: None. Exposure: Annually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measures: Ensemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. Results: From April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and Relevance: COVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease.

5.
medRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168429

RESUMO

Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. Forecasting teams were asked to provide national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one through four weeks ahead for the 2021-22 and 2022-23 influenza seasons. Across both seasons, 26 teams submitted forecasts, with the submitting teams varying between seasons. Forecast skill was evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperformed the baseline model across forecast weeks and locations in 2021-22 and 12 out of 18 models in 2022-23. Averaging across all forecast targets, the FluSight ensemble was the 2nd most accurate model measured by WIS in 2021-22 and the 5th most accurate in the 2022-23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degraded over longer forecast horizons and during periods of rapid change. Current influenza forecasting efforts help inform situational awareness, but research is needed to address limitations, including decreased performance during periods of changing epidemic dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA