Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 14(2): 964-977, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36860172

RESUMO

BACKGROUND: Inclusion body myositis (IBM) is an inflammatory myopathy clinically characterized by proximal and distal muscle weakness, with inflammatory infiltrates, rimmed vacuoles and mitochondrial changes in muscle histopathology. There is scarce knowledge on IBM aetiology, and non-established biomarkers or effective treatments are available, partly due to the lack of validated disease models. METHODS: We have performed transcriptomics and functional validation of IBM muscle pathological hallmarks in fibroblasts from IBM patients (n = 14) and healthy controls (n = 12), paired by age and sex. The results comprise an mRNA-seq, together with functional inflammatory, autophagy, mitochondrial and metabolic changes between patients and controls. RESULTS: Gene expression profile of IBM vs control fibroblasts revealed 778 differentially expressed genes (P-value adj < 0.05) related to inflammation, mitochondria, cell cycle regulation and metabolism. Functionally, an increased inflammatory profile was observed in IBM fibroblasts with higher supernatant cytokine secretion (three-fold increase). Autophagy was reduced considering basal protein mediators (18.4% reduced), time-course autophagosome formation (LC3BII 39% reduced, P-value < 0.05), and autophagosome microscopic evaluation. Mitochondria displayed reduced genetic content (by 33.9%, P-value < 0.05) and function (30.2%-decrease in respiration, 45.6%-decline in enzymatic activity (P-value < 0.001), 14.3%-higher oxidative stress, 135.2%-increased antioxidant defence (P-value < 0.05), 11.6%-reduced mitochondrial membrane potential (P-value < 0.05) and 42.8%-reduced mitochondrial elongation (P-value < 0.05)). In accordance, at the metabolite level, organic acid showed a 1.8-fold change increase, with conserved amino acid profile. Correlating to disease evolution, oxidative stress and inflammation emerge as potential markers of prognosis. CONCLUSIONS: These findings confirm the presence of molecular disturbances in peripheral tissues from IBM patients and prompt patients' derived fibroblasts as a promising disease model, which may eventually be exported to other neuromuscular disorders. We additionally identify new molecular players in IBM associated with disease progression, setting the path to deepen in disease aetiology, in the identification of novel biomarkers or in the standardization of biomimetic platforms to assay new therapeutic strategies for preclinical studies.


Assuntos
Miosite de Corpos de Inclusão , Miosite , Humanos , Miosite de Corpos de Inclusão/diagnóstico , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Músculos/metabolismo , Inflamação/patologia , Biomarcadores/metabolismo
2.
Antioxidants (Basel) ; 11(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35624698

RESUMO

Intrauterine growth restriction (IUGR) affects 5-10% of newborns and increases the risks of intrauterine demise, neonatal morbidity, and death. In their recent publication, Yeste et al. found the benefits of hydroxytyrosol supplementation on brain remodeling from an IUGR pig model. Additionally, we found a significant decrease in phenolic alcohol (tyrosol and hydroxytyrosol) intake in IUGR pregnant women. Altogether, these findings support the notion that dietetic interventions, through supplementation but mostly via a balanced diet, can ameliorate IUGR complications. Furthermore, diet intervention combined with early biomarkers may allow clinicians to eventually anticipate IUGR diagnosis and help avoid one of the most frequent causes of newborn mortality and morbidity.

3.
PLoS One ; 17(3): e0265256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35290400

RESUMO

Neurodegenerative diseases, such as Parkinson's disease, are heterogeneous disorders with a multifactorial nature involving impaired bioenergetics. Stem-regenerative medicine and bioenergetics have been proposed as promising therapeutic targets in the neurologic field. The rationale of the present study was to assess the potential of human-derived adipose stem cells (hASCs) to transdifferentiate into neuronal-like cells (NhASCs and neurospheres) and explore the hASC bioenergetic profile. hASC neuronal transdifferentiation was performed through neurobasal media and differentiation factor exposure. High resolution respirometry was assessed. Increased MAP-2 neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 28-36 days of differentiation) and increased bIII-tubulin neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 6-28-36 days of differentiation) were found. The bioenergetic profile was detectable through high-resolution respirometry approaches in hASCs but did not lead to differential oxidative capacity rates in healthy or clinically diagnosed PD-hASCs. We confirmed the capability of transdifferentiation to the neuronal-like profile of hASCs derived from the forearms of human subjects and characterized the bioenergetic profile. Suboptimal maximal respiratory capacity trends in PD were found. Neuronal induction leading to positive neuronal protein expression markers is a relevant issue that encourages the suitability of NhASC models in neurodegeneration.


Assuntos
Doença de Parkinson , Tecido Adiposo/metabolismo , Diferenciação Celular , Células Cultivadas , Metabolismo Energético , Antebraço , Humanos , Doença de Parkinson/metabolismo , Células-Tronco
4.
Arch Dis Child ; 107(7): 686-691, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35288419

RESUMO

BACKGROUND: Ganciclovir/valganciclovir is currently indicated during the first 6 months of life in symptomatic children with congenital cytomegalovirus (CMV) infection. However, this treatment may have the potential to induce mitochondrial toxicity due to off-target inhibition of DNA-polymerases. Similar anti-HIV drugs have been associated with mitochondrial toxicity but this has never been explored in CMV. OBJECTIVE: To determine the potential mitochondrial toxicity profile at the genetic, functional and biogenesis level in peripheral blood mononuclear cells from a cohort of newborns and infants with symptomatic congenital CMV infection (treated with valganciclovir, untreated and uninfected controls). DESIGN: Longitudinal, observational and controlled study. SETTING AND PATIENTS: Subjects were recruited at the tertiary referral Hospital Sant Joan de Déu and experiments were conducted at IDIBAPS-Hospital Clínic of Barcelona, Spain. CMV-infected newborns underwent comprehensive monthly clinical follow-up. METHODS: Mitochondrial parameters, audiometry and neurological assessment were measured at baseline, 3-6 and 12 months after inclusion in the study. The Kruskal-Wallis test for k-independent samples and Friedman tests for repeated measurements were applied. RESULTS: Complex IV, citrate synthase enzymatic activities and mtDNA remained preserved in congenital CMV-infected infants treated with valganciclovir compared with controls (p>0.05 in all cases). CONCLUSIONS: No evidence of mitochondrial toxicity was found in infants treated with valganciclovir for congenital CMV.


Assuntos
Fármacos Anti-HIV , Infecções por Citomegalovirus , Fármacos Anti-HIV/uso terapêutico , Antivirais/efeitos adversos , Criança , Infecções por Citomegalovirus/congênito , Ganciclovir/efeitos adversos , Humanos , Lactente , Recém-Nascido , Leucócitos Mononucleares , Estudos Longitudinais , Valganciclovir/uso terapêutico
5.
Biomedicines ; 9(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440065

RESUMO

The intervention with the Mediterranean diet (MD) pattern has evidenced short-term anti-inflammatory effects, but little is known about its long-term anti-inflammatory properties at molecular level. This study aims to investigate the 3-year effect of MD interventions compared to low-fat diet (LFD) on changes on inflammatory biomarkers related to atherosclerosis in a free-living population with a high-risk of cardiovascular disease (CD). Participants (n = 285) in the PREDIMED trial were randomly assigned into three intervention groups: MD with extra-virgin olive oil (EVOO) or MD-Nuts, and a LFD. Fourteen plasma inflammatory biomarkers were determined by Luminex assays. An additional pilot study of gene expression (GE) was determined by RT-PCR in 35 participants. After 3 years, both MDs showed a significant reduction in the plasma levels of IL-1ß, IL-6, IL-8, TNF-α, IFN-γ, hs-CRP, MCP-1, MIP-1ß, RANTES, and ENA78 (p < 0.05; all). The decreased levels of IL-1ß, IL-6, IL-8, and TNF-α after MD significantly differed from those in the LFD (p < 0.05). No significant changes were observed at the gene level after MD interventions, however, the GE of CXCR2 and CXCR3 tended to increase in the control LFD group (p = 0.09). This study supports the implementation of MD as a healthy long-term dietary pattern in the prevention of CD in populations at high cardiovascular risk.

6.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806981

RESUMO

Infectious diseases occur worldwide with great frequency in both adults and children. Both infections and their treatments trigger mitochondrial interactions at multiple levels: (i) incorporation of damaged or mutated proteins to the complexes of the electron transport chain, (ii) mitochondrial genome (depletion, deletions, and point mutations) and mitochondrial dynamics (fusion and fission), (iii) membrane potential, (iv) apoptotic regulation, (v) generation of reactive oxygen species, among others. Such alterations may result in serious adverse clinical events with great impact on children's quality of life, even resulting in death. As such, bacterial agents are frequently associated with loss of mitochondrial membrane potential and cytochrome c release, ultimately leading to mitochondrial apoptosis by activation of caspases-3 and -9. Using Rayyan QCRI software for systematic reviews, we explore the association between mitochondrial alterations and pediatric infections including (i) bacterial: M. tuberculosis, E. cloacae, P. mirabilis, E. coli, S. enterica, S. aureus, S. pneumoniae, N. meningitidis and (ii) parasitic: P. falciparum. We analyze how these pediatric infections and their treatments may lead to mitochondrial deterioration in this especially vulnerable population, with the intention of improving both the understanding of these diseases and their management in clinical practice.


Assuntos
Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Interações Hospedeiro-Patógeno , Mitocôndrias/metabolismo , Doenças Parasitárias/metabolismo , Doenças Parasitárias/parasitologia , Fatores Etários , Apoptose , Infecções Bacterianas/diagnóstico , Biomarcadores , Criança , Suscetibilidade a Doenças , Interações Hospedeiro-Parasita , Humanos , Potencial da Membrana Mitocondrial , Oxirredução , Doenças Parasitárias/diagnóstico
7.
Rev Med Virol ; 31(6): e2232, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33792105

RESUMO

Infectious diseases occur worldwide with great frequency in both adults and children, causing 350,000 deaths in 2017, according to the latest World Health Organization reports. Both infections and their treatments trigger mitochondrial interactions at multiple levels: (i) incorporation of damaged or mutated proteins into the complexes of the electron transport chain; (ii) impact on mitochondrial genome (depletion, deletions and point mutations) and mitochondrial dynamics (fusion and fission); (iii) membrane potential impairment; (iv) apoptotic regulation; and (v) generation of reactive oxygen species, among others. Such alterations may result in serious adverse clinical events with considerable impact on the quality of life of the children and could even cause death. Herein, we use a systematic review to explore the association between mitochondrial alterations in paediatric infections including human immunodeficiency virus, cytomegalovirus, herpes viruses, various forms of hepatitis, adenovirus, T-cell lymphotropic virus and influenza. We analyse how these paediatric viral infectious processes may cause mitochondrial deterioration in this especially vulnerable population, with consideration for the principal aspects of research and diagnosis leading to improved disease understanding, management and surveillance.


Assuntos
Doenças Transmissíveis , Mitocôndrias/metabolismo , Viroses/metabolismo , Antivirais , Criança , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Pediatria , Viroses/patologia
8.
Antioxidants (Basel) ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143119

RESUMO

Idiopathic Parkinson's disease (iPD) and type 2 diabetes mellitus (T2DM) are chronic, multisystemic, and degenerative diseases associated with aging, with eventual epidemiological co-morbidity and overlap in molecular basis. This study aims to explore if metabolic and mitochondrial alterations underlie the previously reported epidemiologic and clinical co-morbidity from a molecular level. To evaluate the adaptation of iPD to a simulated pre-diabetogenic state, we exposed primary cultured fibroblasts from iPD patients and controls to standard (5 mM) and high (25 mM) glucose concentrations to further characterize metabolic and mitochondrial resilience. iPD fibroblasts showed increased organic and amino acid levels related to mitochondrial metabolism with respect to controls, and these differences were enhanced in high glucose conditions (citric, suberic, and sebacic acids levels increased, as well as alanine, glutamate, aspartate, arginine, and ornithine amino acids; p-values between 0.001 and 0.05). The accumulation of metabolites in iPD fibroblasts was associated with (and probably due to) the concomitant mitochondrial dysfunction observed at enzymatic, oxidative, respiratory, and morphologic level. Metabolic and mitochondrial plasticity of controls was not observed in iPD fibroblasts, which were unable to adapt to different glucose conditions. Impaired metabolism and mitochondrial activity in iPD may limit energy supply for cell survival. Moreover, reduced capacity to adapt to disrupted glucose balance characteristic of T2DM may underlay the co-morbidity between both diseases. Conclusions: Fibroblasts from iPD patients showed mitochondrial impairment, resulting in the accumulation of organic and amino acids related to mitochondrial metabolism, especially when exposed to high glucose. Mitochondrial and metabolic defects down warding cell plasticity to adapt to changing glucose bioavailability may explain the comorbidity between iPD and T2DM.

9.
Nutrients ; 12(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933003

RESUMO

According to the World Health Organization (WHO), the global nutrition report shows that whilst part of the world's population starves, the other part suffers from obesity and associated complications. A balanced diet counterparts these extreme conditions with the proper proportion, composition, quantity, and presence of macronutrients, micronutrients, and bioactive compounds. However, little is known on the way these components exert any influence on our health. These nutrients aiming to feed our bodies, our tissues, and our cells, first need to reach mitochondria, where they are decomposed into CO2 and H2O to obtain energy. Mitochondria are the powerhouse of the cell and mainly responsible for nutrients metabolism, but they are also the main source of oxidative stress and cell death by apoptosis. Unappropriated nutrients may support mitochondrial to become the Trojan horse in the cell. This review aims to provide an approach to the role that some nutrients exert on mitochondria as a major contributor to high prevalent Western conditions including metabolic syndrome (MetS), a constellation of pathologic conditions which promotes type II diabetes and cardiovascular risk. Clinical and experimental data extracted from in vitro animal and cell models further demonstrated in patients, support the idea that a balanced diet, in a healthy lifestyle context, promotes proper bioenergetic and mitochondrial function, becoming the best medicine to prevent the onset and progression of MetS. Any advance in the prevention and management of these prevalent complications help to face these challenging global health problems, by ameliorating the quality of life of patients and reducing the associated sociosanitary burden.


Assuntos
Metabolismo Energético/fisiologia , Síndrome Metabólica/fisiopatologia , Estado Nutricional , Dieta/efeitos adversos , Dieta/métodos , Humanos , Mitocôndrias/fisiologia , Estresse Oxidativo/fisiologia
10.
Front Genet ; 11: 497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528527

RESUMO

Background: Mitochondrial genome has been used across multiple fields in research, diagnosis, and toxicogenomics. Several compounds damage mitochondrial DNA (mtDNA), including biological and therapeutic agents like the human immunodeficiency virus (HIV) but also its antiretroviral treatment, leading to adverse clinical manifestations. HIV-infected and treated patients may show impaired mitochondrial and metabolic profile, but specific contribution of viral or treatment toxicity remains elusive. The evaluation of HIV consequences without treatment interference has been performed in naïve (non-treated) patients, but assessment of treatment toxicity without viral interference is usually restricted to in vitro assays. Objective: The objective of the present study is to determine whether antiretroviral treatment without HIV interference can lead to mtDNA disturbances. We studied clinical, mitochondrial, and metabolic toxicity in non-infected healthy patients who received HIV post-exposure prophylaxis (PEP) to prevent further infection. We assessed two different PEP regimens according to their composition to ascertain if they were the cause of tolerability issues and derived toxicity. Methods: We analyzed reasons for PEP discontinuation and main secondary effects of treatment withdrawal, mtDNA content from peripheral blood mononuclear cells and metabolic profile, before and after 28 days of PEP, in 23 patients classified depending on PEP composition: one protease inhibitor (PI) plus Zidovudine/Lamivudine (PI plus AZT + 3TC; n = 9) or PI plus Tenofovir/Emtricitabine (PI plus TDF + FTC; n = 14). Results: Zidovudine-containing-regimens showed an increased risk for drug discontinuation (RR = 9.33; 95% CI = 1.34-65.23) due to adverse effects of medication related to gastrointestinal complications. In the absence of metabolic disturbances, 4-week PEP containing PI plus AZT + 3TC led to higher mitochondrial toxicity (-17.9 ± 25.8 decrease in mtDNA/nDNA levels) than PI plus TDF + FTC (which increased by 43.2 ± 24.3 units mtDNA/nDNA; p < 0.05 between groups). MtDNA changes showed a significant and negative correlation with baseline alanine transaminase levels (p < 0.05), suggesting that a proper hepatic function may protect from antiretroviral toxicity. Conclusions: In absence of HIV infection, preventive short antiretroviral treatment can cause secondary effects responsible for treatment discontinuation and subclinical mitochondrial damage, especially pyrimidine analogs such as AZT, which still rank as the alternative option and first choice in certain cohorts for PEP. Forthcoming efforts should be focused on launching new strategies with safer clinical and mitotoxic profile.

11.
J Clin Med ; 9(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413985

RESUMO

Sporadic inclusion body myositis (sIBM) is an inflammatory myopathy associated, among others, with mitochondrial dysfunction. Similar molecular features are found in Alzheimer's disease (AD) and Type 2 Diabetes Mellitus (T2DM), underlying potential comorbidity. This study aims to evaluate common clinical and molecular hallmarks among sIBM, AD, and T2DM. Comorbidity with AD was assessed in n = 14 sIBM patients by performing neuropsychological and cognitive tests, cranial magnetic resonance imaging, AD cerebrospinal fluid biomarkers (levels of amyloid beta, total tau, and phosphorylated tau at threonine-181), and genetic apolipoprotein E genotyping. In the same sIBM cohort, comorbidity with T2DM was assessed by collecting anthropometric measures and performing an oral glucose tolerance test and insulin determinations. Results were compared to the standard population and other myositis (n = 7 dermatomyositis and n = 7 polymyositis). Mitochondrial contribution into disease was tested by measurement of oxidative/anaerobic and oxidant/antioxidant balances, respiration fluxes, and enzymatic activities in sIBM fibroblasts subjected to different glucose levels. Comorbidity of sIBM with AD was not detected. Clinically, sIBM patients showed signs of misbalanced glucose homeostasis, similar to other myositis. Such misbalance was further confirmed at the molecular level by the metabolic inability of sIBM fibroblasts to adapt to different glucose conditions. Under the standard condition, sIBM fibroblasts showed decreased respiration (0.71 ± 0.08 vs. 1.06 ± 0.04 nmols O2/min; p = 0.024) and increased anaerobic metabolism (5.76 ± 0.52 vs. 3.79 ± 0.35 mM lactate; p = 0.052). Moreover, when glucose conditions were changed, sIBM fibroblasts presented decreased fold change in mitochondrial enzymatic activities (-12.13 ± 21.86 vs. 199.22 ± 62.52 cytochrome c oxidase/citrate synthase ratio; p = 0.017) and increased oxidative stress per mitochondrial activity (203.76 ± 82.77 vs. -69.55 ± 21.00; p = 0.047), underlying scarce metabolic plasticity. These findings do not demonstrate higher prevalence of AD in sIBM patients, but evidences of prediabetogenic conditions were found. Glucose deregulation in myositis suggests the contribution of lifestyle conditions, such as restricted mobility. Additionally, molecular evidences from sIBM fibroblasts confirm that mitochondrial dysfunction may play a role. Monitoring T2DM development and mitochondrial contribution to disease in myositis patients could set a path for novel therapeutic options.

12.
Aging (Albany NY) ; 11(22): 10338-10355, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31751314

RESUMO

Glucocerebrosidase (GBA) mutations are the most important genetic risk factor for the development of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase). Loss-of-GCase activity in cellular models has implicated lysosomal and mitochondrial dysfunction in PD disease pathogenesis, although the exact mechanisms remain unclear. We hypothesize that GBA mutations impair mitochondria quality control in a neurosphere model.We have characterized mitochondrial content, mitochondrial function and macroautophagy flux in 3D-neurosphere-model derived from neural crest stem cells containing heterozygous and homozygous N370SGBA mutations, under carbonyl cyanide-m-chlorophenyl-hydrazine (CCCP)- induced mitophagy.Our findings on mitochondrial markers and ATP levels indicate that mitochondrial accumulation occurs in mutant N370SGBA neurospheres under basal conditions, and clearance of depolarised mitochondria is impaired following CCCP-treatment. A significant increase in TFEB-mRNA levels, the master regulator of lysosomal and autophagy genes, may explain an unchanged macroautophagy flux in N370SGBA neurospheres. PGC1α-mRNA levels were also significantly increased following CCCP-treatment in heterozygote, but not homozygote neurospheres, and might contribute to the increased mitochondrial content seen in cells with this genotype, probably as a compensatory mechanism that is absent in homozygous lines.Mitochondrial impairment occurs early in the development of GCase-deficient neurons. Furthermore, impaired turnover of depolarised mitochondria is associated with early mitochondrial dysfunction.In summary, the presence of GBA mutation may be associated with higher levels of mitochondrial content in homozygous lines and lower clearance of damaged mitochondria in our neurosphere model.


Assuntos
Glucosilceramidase/genética , Mitocôndrias/patologia , Mitofagia/genética , Células-Tronco Neurais/patologia , Humanos , Mitocôndrias/genética , Mutação , Crista Neural
13.
Aging (Albany NY) ; 11(11): 3750-3767, 2019 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-31180333

RESUMO

PRKN encodes an E3-ubiquitin-ligase involved in multiple cell processes including mitochondrial homeostasis and autophagy. Previous studies reported alterations of mitochondrial function in fibroblasts from patients with PRKN mutation-associated Parkinson's disease (PRKN-PD) but have been only conducted in glycolytic conditions, potentially masking mitochondrial alterations. Additionally, autophagy flux studies in this cell model are missing.We analyzed mitochondrial function and autophagy in PRKN-PD skin-fibroblasts (n=7) and controls (n=13) in standard (glucose) and mitochondrial-challenging (galactose) conditions.In glucose, PRKN-PD fibroblasts showed preserved mitochondrial bioenergetics with trends to abnormally enhanced mitochondrial respiration that, accompanied by decreased CI, may account for the increased oxidative stress. In galactose, PRKN-PD fibroblasts exhibited decreased basal/maximal respiration vs. controls and reduced mitochondrial CIV and oxidative stress compared to glucose, suggesting an inefficient mitochondrial oxidative capacity to meet an extra metabolic requirement. PRKN-PD fibroblasts presented decreased autophagic flux with reduction of autophagy substrate and autophagosome synthesis in both conditions.The alterations exhibited under neuron-like oxidative environment (galactose), may be relevant to the disease pathogenesis potentially explaining the increased susceptibility of dopaminergic neurons to undergo degeneration. Abnormal PRKN-PD phenotype supports the usefulness of fibroblasts to model disease and the view of PD as a systemic disease where molecular alterations are present in peripheral tissues.


Assuntos
Autofagia/genética , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Pele/metabolismo , Ubiquitina-Proteína Ligases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mutação , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/genética
14.
BMC Med Res Methodol ; 19(1): 112, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151417

RESUMO

BACKGROUND: From 2005 to 2010, we conducted 2 randomized studies on a journal (Medicina Clínica), where we took manuscripts received for publication and randomly assigned them to either the standard editorial process or to additional processes. Both studies were based on the use of methodological reviewers and reporting guidelines (RG). Those interventions slightly improved the items reported on the Manuscript Quality Assessment Instrument (MQAI), which assesses the quality of the research report. However, masked evaluators were able to guess the allocated group in 62% (56/90) of the papers, thus presenting a risk of detection bias. In this post-hoc study, we analyse whether those interventions that were originally designed for improving the completeness of manuscript reporting may have had an effect on the number of citations, which is the measured outcome that we used. METHODS: Masked to the intervention group, one of us used the Web of Science (WoS) to quantify the number of citations that the participating manuscripts received up December 2016. We calculated the mean citation ratio between intervention arms and then quantified the uncertainty of it by means of the Jackknife method, which avoids assumptions about the distribution shape. RESULTS: Our study included 191 articles (99 and 92, respectively) from the two previous studies, which all together received 1336 citations. In both studies, the groups subjected to additional processes showed higher averages, standard deviations and annual rates. The intervention effect was similar in both studies, with a combined estimate of a 43% (95% CI: 3 to 98%) increase in the number of citations. CONCLUSIONS: We interpret that those effects are driven mainly by introducing into the editorial process a senior methodologist to find missing RG items. Those results are promising, but not definitive due to the exploratory nature of the study and some important caveats such as: the limitations of using the number of citations as a measure of scientific impact; and the fact that our study is based on a single journal. We invite journals to perform their own studies to ascertain whether or not scientific repercussion is increased by adhering to reporting guidelines and further involving statisticians in the editorial process.


Assuntos
Fidelidade a Diretrizes/estatística & dados numéricos , Fator de Impacto de Revistas , Revisão por Pares/normas , Editoração/normas , Políticas Editoriais , Humanos
15.
Hum Mutat ; 40(10): 1700-1712, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31058414

RESUMO

3-Methylglutaconic aciduria (3-MGA-uria) syndromes comprise a heterogeneous group of diseases associated with mitochondrial membrane defects. Whole-exome sequencing identified compound heterozygous mutations in TIMM50 (c.[341 G>A];[805 G>A]) in a boy with West syndrome, optic atrophy, neutropenia, cardiomyopathy, Leigh syndrome, and persistent 3-MGA-uria. A comprehensive analysis of the mitochondrial function was performed in fibroblasts of the patient to elucidate the molecular basis of the disease. TIMM50 protein was severely reduced in the patient fibroblasts, regardless of the normal mRNA levels, suggesting that the mutated residues might be important for TIMM50 protein stability. Severe morphological defects and ultrastructural abnormalities with aberrant mitochondrial cristae organization in muscle and fibroblasts were found. The levels of fully assembled OXPHOS complexes and supercomplexes were strongly reduced in fibroblasts from this patient. High-resolution respirometry demonstrated a significant reduction of the maximum respiratory capacity. A TIMM50-deficient HEK293T cell line that we generated using CRISPR/Cas9 mimicked the respiratory defect observed in the patient fibroblasts; notably, this defect was rescued by transfection with a plasmid encoding the TIMM50 wild-type protein. In summary, we demonstrated that TIMM50 deficiency causes a severe mitochondrial dysfunction by targeting key aspects of mitochondrial physiology, such as the maintenance of proper mitochondrial morphology, OXPHOS assembly, and mitochondrial respiratory capacity.


Assuntos
Proteínas de Membrana Transportadoras/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Biomarcadores , Transporte de Elétrons , Metabolismo Energético , Fibroblastos/metabolismo , Expressão Gênica , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Fenótipo , Transporte Proteico , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Sequenciamento do Exoma
16.
J Cell Mol Med ; 23(6): 3962-3973, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30941904

RESUMO

Intrauterine growth restriction (IUGR) is an obstetric complication characterised by placental insufficiency and secondary cardiovascular remodelling that can lead to cardiomyopathy in adulthood. Despite its aetiology and potential therapeutics are poorly understood, bioenergetic deficits have been demonstrated in adverse foetal and cardiac development. We aimed to evaluate the role of mitochondria in human pregnancies with IUGR. In a single-site, cross-sectional and observational study, we included placenta and maternal peripheral and neonatal cord blood mononuclear cells (PBMC and CBMC) from 14 IUGR and 22 control pregnancies. The following mitochondrial measurements were assessed: enzymatic activities of mitochondrial respiratory chain (MRC) complexes I, II, IV, I + III and II + III, oxygen consumption (cell and complex I-stimulated respiration), mitochondrial content (citrate synthase [CS] activity and mitochondrial DNA copy number), total ATP levels and lipid peroxidation. Sirtuin3 expression was evaluated as a potential regulator of bioenergetic imbalance. Intrauterine growth restriction placental tissue showed a significant decrease of MRC CI enzymatic activity (P < 0.05) and CI-stimulated oxygen consumption (P < 0.05) accompanied by a significant increase of Sirtuin3/ß-actin protein levels (P < 0.05). Maternal PBMC and neonatal CBMC from IUGR patients presented a not significant decrease in oxygen consumption (cell and CI-stimulated respiration) and MRC enzymatic activities (CII and CIV). Moreover, CS activity was significantly reduced in IUGR new-borns (P < 0.05). Total ATP levels and lipid peroxidation were preserved in all the studied tissues. Altered mitochondrial function of IUGR is especially present at placental and neonatal level, conveying potential targets to modulate obstetric outcome through dietary interventions aimed to regulate Sirtuin3 function.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Coração/fisiopatologia , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , Placenta/metabolismo , Sirtuína 3/metabolismo , Adulto , Citrato (si)-Sintase/metabolismo , Estudos Transversais , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Coração/crescimento & desenvolvimento , Humanos , Peroxidação de Lipídeos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Peptídeo Natriurético Encefálico/sangue , Consumo de Oxigênio , Gravidez , Sirtuína 3/genética , Remodelação Ventricular
17.
J Transl Med ; 16(1): 160, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884186

RESUMO

BACKGROUND: Mutations in leucine rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). Mitochondrial and autophagic dysfunction has been described as etiologic factors in different experimental models of PD. We aimed to study the role of mitochondria and autophagy in LRRK2 G2019S -mutation, and its relationship with the presence of PD-symptoms. METHODS: Fibroblasts from six non-manifesting LRRK2 G2019S -carriers (NM-LRRK2 G2019S ) and seven patients with LRRK2 G2019S -associated PD (PD-LRRK2 G2019S ) were compared to eight healthy controls (C). An exhaustive assessment of mitochondrial performance and autophagy was performed after 24-h exposure to standard (glucose) or mitochondrial-challenging environment (galactose), where mitochondrial and autophagy impairment may be heightened. RESULTS: A similar mitochondrial phenotype of NM-LRRK2 G2019S and controls, except for an early mitochondrial depolarization (54.14% increased, p = 0.04), was shown in glucose. In response to galactose, mitochondrial dynamics of NM-LRRK2 G2019S improved (- 17.54% circularity, p = 0.002 and + 42.53% form factor, p = 0.051), probably to maintain ATP levels over controls. A compromised bioenergetic function was suggested in PD-LRRK2 G2019S when compared to controls in glucose media. An inefficient response to galactose and worsened mitochondrial dynamics (- 37.7% mitochondrial elongation, p = 0.053) was shown, leading to increased oxidative stress. Autophagy initiation (SQTSM/P62) was upregulated in NM-LRRK2 G2019S when compared to controls (glucose + 118.4%, p = 0.014; galactose + 114.44%, p = 0.009,) and autophagosome formation increased in glucose media. Despite of elevated SQSTM1/P62 levels of PD-NM G2019S when compared to controls (glucose + 226.14%, p = 0.04; galactose + 78.5%, p = 0.02), autophagosome formation was deficient in PD-LRRK2 G2019S when compared to NM-LRRK2 G2019S (- 71.26%, p = 0.022). CONCLUSIONS: Enhanced mitochondrial performance of NM-LRRK2 G2019S in mitochondrial-challenging conditions and upregulation of autophagy suggests that an exhaustion of mitochondrial bioenergetic and autophagic reserve, may contribute to the development of PD in LRRK2 G2019S mutation carriers.


Assuntos
Autofagia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mitocôndrias/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Adulto , Idoso , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Dinâmica Mitocondrial , Mutação/genética , Doença de Parkinson/epidemiologia , Fenótipo
18.
Neurobiol Aging ; 65: 206-216, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29501959

RESUMO

Mutations in the parkin gene (PRKN) are the most common cause of autosomal-recessive juvenile Parkinson's disease (PD). PRKN encodes an E3 ubiquitin ligase that is involved in multiple regulatory functions including proteasomal-mediated protein turnover, mitochondrial function, mitophagy, and cell survival. However, the precise molecular events mediated by PRKN mutations in PRKN-associated PD (PRKN-PD) remain unknown. To elucidate the cellular impact of parkin mutations, we performed an RNA sequencing study in skin fibroblasts from PRKN-PD patients carrying different PRKN mutations (n = 4) and genetically unrelated healthy subjects (n = 4). We identified 343 differentially expressed genes in PRKN-PD fibroblasts. Gene ontology and canonical pathway analysis revealed enrichment of differentially expressed genes in processes such as cell adhesion, cell growth, and amino acid and folate metabolism among others. Our findings indicate that PRKN mutations are associated with large global gene expression changes as observed in fibroblasts from PRKN-PD patients and support the view of PD as a systemic disease affecting also non-neural peripheral tissues such as the skin.


Assuntos
Fibroblastos , Mutação , Doença de Parkinson/genética , Transcriptoma , Ubiquitina-Proteína Ligases/genética , Adulto , Idoso , Aminoácidos/metabolismo , Adesão Celular/genética , Processos de Crescimento Celular/genética , Células Cultivadas , Criança , Feminino , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Ácido Fólico/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Pele/citologia , Ubiquitina-Proteína Ligases/fisiologia
19.
J Antimicrob Chemother ; 72(9): 2578-2586, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859443

RESUMO

Background: HIV infection and HAART trigger genetic and functional mitochondrial alterations leading to cell death and adverse clinical manifestations. Mitochondrial dynamics enable mitochondrial turnover and degradation of damaged mitochondria, which may lead to apoptosis. Objectives: To evaluate markers of mitochondrial dynamics and apoptosis in pregnancies among HIV-infected women on HAART and determine their potential association with obstetric complications. Methods: This controlled, single-site, observational study without intervention included 26 HIV-infected pregnant women on HAART and 18 control pregnancies and their newborns. Maternal PBMCs and neonatal cord blood mononuclear cells (CBMCs) were isolated at the first trimester of gestation and at delivery. The placenta was homogenized at 5% w/v. Mitochondrial dynamics, fusion events [mitofusin 2 (Mfn2)/ß-actin] and fission events [dynamin-related protein 1 (Drp1/ß-actin)] and apoptosis (caspase 3/ß-actin) were assessed by western blot analysis. Results: Obstetric complications were significantly more frequent in pregnancies among HIV-infected women [OR 5.00 (95% CI 1.21-20.70)]. Mfn2/ß-actin levels in PBMCs from controls significantly decreased during pregnancy (202.13 ±â€¯57.45%), whereas cases maintained reduced levels from the first trimester of pregnancy and no differences were observed in CBMCs. Mfn2/ß-actin and Drp1/ß-actin contents significantly decreased in the placenta of cases. Caspase 3/ß-actin levels significantly increased during pregnancy in PBMCs of cases (50.00 ±â€¯7.89%), remaining significantly higher than in controls. No significant differences in caspase 3/ß-actin content of neonatal CBMCs were observed, but there was a slight increased trend in placenta from cases. Conclusions: HIV- and HAART-mediated mitochondrial damage may be enhanced by decreased mitochondrial dynamics and increased apoptosis in maternal and placental compartments but not in the uninfected fetus. However, direct effects on mitochondrial dynamics and implication of apoptosis were not demonstrated in adverse obstetric outcomes.


Assuntos
Fármacos Anti-HIV/efeitos adversos , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Apoptose/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Dinâmica Mitocondrial/efeitos dos fármacos , Complicações Infecciosas na Gravidez/tratamento farmacológico , Resultado da Gravidez , Adulto , Fármacos Anti-HIV/uso terapêutico , Caspase 3/genética , Feminino , GTP Fosfo-Hidrolases/genética , Infecções por HIV/virologia , Humanos , Recém-Nascido , Leucócitos Mononucleares , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/genética , Placenta/fisiologia , Gravidez , Complicações Infecciosas na Gravidez/virologia
20.
Stem Cells ; 35(7): 1687-1703, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28472853

RESUMO

Coenzyme Q10 (CoQ10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ10 biosynthesis (COQ genes) cause primary CoQ10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ10 ], CoQ10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703.


Assuntos
Ataxia/genética , Deficiência Intelectual/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Debilidade Muscular/genética , Rabdomiólise/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ataxia/enzimologia , Ataxia/patologia , Sistemas CRISPR-Cas , Diferenciação Celular , Pré-Escolar , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Evolução Fatal , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Edição de Genes/métodos , Expressão Gênica , Genes Letais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Deficiência Intelectual/enzimologia , Deficiência Intelectual/patologia , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/deficiência , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Debilidade Muscular/enzimologia , Debilidade Muscular/patologia , Cultura Primária de Células , Rabdomiólise/enzimologia , Rabdomiólise/patologia , Ubiquinona/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA