Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32913487

RESUMO

Topics related to energy transformation and metabolism are important parts of an undergraduate biology curriculum, but these are also topics that students traditionally struggle with. To address this, we have created a short online Interactive Video Vignette (IVV) called To Ferment or Not to Ferment: That is the Question. This IVV is designed to help students learn important ideas related to cellular respiration and metabolism. Students in various courses across four institutions were assigned the IVV as an out-of-class preinstruction homework assignment. To test the effectiveness of this IVV on student learning, we collected and analyzed data from questions embedded in the IVV, open response reflection questions, and pre- and postassessments from IVV watchers and nonwatchers. Our analysis revealed that students who completed the IVV activity interacted productively with this online tool and made significant learning gains on important topics related to cellular respiration and metabolism. This IVV is freely available via https://www.rit.edu/cos/interactive/MINT for instructors to adopt for class use.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28904648

RESUMO

Many first-year biology students begin college with high aspirations but limited skills in terms of those needed for their success. Teachers are increasingly focused on students' lack of metacognitive awareness combined with students' inability to self-regulate learning behaviors. To address this need, we have designed a series of out-of-class assignments to provide explicit instruction on memory and learning. Our metacognition modules consist of six video assignments with reflective journaling prompts, allowing students to explore the relationship between the learning cycle, neuroplasticity, memory function, expert and novice thinking, and effective study strategies. By setting lessons on improving study behavior within a biological context, we help students grasp the reason for changing their behavior based on an understanding of biological functions and their application to learning. Students who complete these scaffolded journaling assignments show a shift toward a growth mindset and a consistent ability to evaluate the efficacy of their own study behaviors. In this article, we discuss the modules and student assignments, as well as provide in depth support for faculty who wish to adopt the modules for their own courses.

3.
J Microbiol Biol Educ ; 12(2): 194-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23653764

RESUMO

Longer term research activities that may be incorporated in undergraduate courses are a powerful tool for promoting student interest and learning, developing cognitive process skills, and allowing undergraduates to experience real research activities in which they may not otherwise have the opportunity to participate. The challenge to doing so in lower-level courses is that students may have not fully grasped the scientific concepts needed to undertake such research endeavors, and that they may be discouraged if activities are perceived to be too challenging. The paper describes how a bacterial protein:protein interaction detection system was adapted and incorporated into the laboratory component of a sophomore-level Molecular Cell Biology course. The project was designed to address multiple learning objectives connecting course content to the laboratory activities, as well as teach basic molecular biology laboratory skills and procedures in the context of a primary research activity. Pre- and posttesting and student surveys both suggest that the laboratory curriculum resulted in significant learning gains, as well as being well received and valued by the students.

4.
Mol Microbiol ; 58(1): 177-88, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16164557

RESUMO

Nitric oxide (NO) is an important host defence molecule that varies its immune stimulatory effects depending on the concentrations at which it is produced, with low concentrations (< 1 microM) promoting an anti-inflammatory host response while higher concentrations (>1 microM) lead to inflammatory responses. Neisseria gonorrhoeae grows anaerobically by anaerobic respiration using nitrite reductase (Nir) to convert nitrite to NO and nitric oxide reductase (Nor) to convert NO to nitrous oxide. As N. gonorrhoeae can both produce and degrade NO, we have begun a study of NO metabolism in this bacterium to understand how gonococcal manipulation of NO concentration may influence the inflammatory response during infection. N. gonorrhoeae has an apparent Nir Km of 33 microM nitrite and an apparent Nor Km of 1.2 microM NO. The maximum specific activities for Nir and Nor were 135 nmoles nitrite reduced per minute per OD600 (pH 6.7) and 270 nmoles NO reduced per minute per OD600 (pH 7.5) respectively. N. gonorrhoeae established a steady-state concentration of NO after nitrite addition that was dependent on the nitrite concentration until saturation at 1 mM nitrite. The NO steady-state level decreased as pH increased, and the ratio of activities of Nir and Nor correlated to the NO steady-state level. When the NO donor DETA/NO was used to simulate host NO production, N. gonorrhoeae also established a NO steady-state level. The concentration of NO at steady state was found to be a function of the concentration of NO generated by DETA/NO, with N. gonorrhoeae reducing the NO from proinflammatory (>1 microM) to anti-inflammatory (approximately 100 nM) concentrations. The implications of the ability of N. gonorrhoeae to maintain an anti-inflammatory NO concentration is discussed in relation to asymptomatic infection in women.


Assuntos
Neisseria gonorrhoeae/metabolismo , Óxido Nítrico/metabolismo , Anaerobiose , Feminino , Gonorreia/microbiologia , Gonorreia/patologia , Humanos , Concentração de Íons de Hidrogênio , Neisseria gonorrhoeae/genética , Óxido Nítrico/análise , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Óxido Nitroso/metabolismo , Oxirredutases/metabolismo , Triazenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA