Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38300780

RESUMO

Phylogenetic networks generalize phylogenetic trees in order to model reticulation events. Although the comparison of phylogenetic trees is well studied, and there are multiple ways to do it in an efficient way, the situation is much different for phylogenetic networks. Some classes of phylogenetic networks, mainly tree-child networks, are known to be classified efficiently by their µ-representation, which essentially counts, for every node, the number of paths to each leaf. In this article, we introduce the extended µ-representation of networks, where the number of paths to reticulations is also taken into account. This modification allows us to distinguish orchard networks and to define a metric on the space of such networks that can, moreover, be computed efficiently. The class of orchard networks, as well as being one of the classes with biological significance (one such network can be interpreted as a tree with extra arcs involving coexisting organisms), is one of the most generic ones (in mathematical terms) for which such a representation can (conjecturally) exist, since a slight relaxation of the definition leads to a problem that is Graph Isomorphism Complete.


Assuntos
Algoritmos , Biologia Computacional , Filogenia , Biologia Computacional/métodos , Modelos Genéticos
2.
Bull Math Biol ; 86(1): 10, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117376

RESUMO

Phylogenetic networks are an extension of phylogenetic trees that allow for the representation of reticulate evolution events. One of the classes of networks that has gained the attention of the scientific community over the last years is the class of orchard networks, that generalizes tree-child networks, one of the most studied classes of networks. In this paper we focus on the combinatorial and algorithmic problem of the generation of binary orchard networks, and also of binary tree-child networks. To this end, we use that these networks are defined as those that can be recovered by reversing a certain reduction process. Then, we show how to choose a "minimum" reduction process among all that can be applied to a network, and hence we get a unique representation of the network that, in fact, can be given in terms of sequences of pairs of integers, whose length is related to the number of leaves and reticulations of the network. Therefore, the generation of networks is reduced to the generation of such sequences of pairs. Our main result is a recursive method for the efficient generation of all minimum sequences, and hence of all orchard (or tree-child) networks with a given number of leaves and reticulations. An implementation in C of the algorithms described in this paper, along with some computational experiments, can be downloaded from the public repository  https://github.com/gerardet46/OrchardGenerator . Using this implementation, we have computed the number of binary orchard networks with at most 6 leaves and 8 reticulations.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Humanos , Filogenia , Algoritmos , Folhas de Planta
3.
J Math Biol ; 83(5): 52, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34676444

RESUMO

Measures of phylogenetic balance, such as the Colless and Sackin indices, play an important role in phylogenetics. Unfortunately, these indices are specifically designed for phylogenetic trees, and do not extend naturally to phylogenetic networks (which are increasingly used to describe reticulate evolution). This led us to consider a lesser-known balance index, whose definition is based on a probabilistic interpretation that is equally applicable to trees and to networks. This index, known as the [Formula: see text] index, was first proposed by Shao and Sokal (Syst Zool 39(3): 266-276, 1990). Surprisingly, it does not seem to have been studied mathematically since. Likewise, it is used only sporadically in the biological literature, where it tends to be viewed as arcane. In this paper, we study mathematical properties of [Formula: see text] such as its expectation and variance under the most common models of random trees and its extremal values over various classes of phylogenetic networks. We also assess its relevance in biological applications, and find it to be comparable to that of the Colless and Sackin indices. Altogether, our results call for a reevaluation of the status of this somewhat forgotten measure of phylogenetic balance.


Assuntos
Algoritmos , Evolução Biológica , Filogenia
4.
PLoS One ; 15(10): e0240735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052977

RESUMO

Ray tracing software systems are commonly used to analyze the optics of solar energy devices, since they allow to predict the energy gains of devices in real conditions, and also to compare them with other systems constantly emerging in the market. However, the available open-source packages apply excessive simplifications to the model of light-matter interaction, making that the optical behaviour of the systems can not be properly characterized, which in turn implies disagreements between physical experiments and computer simulations. We present here the open source python package OTSun, which applies the Fresnel equations in their most general form, without further simplifications, and is suitable for the simulation of both solar-thermal and photovoltaic systems. The geometrical objects used in this package are created using the parametric 3D modeler FreeCAD, which is also a free and open source program and allows for the construction of arbitrary geometries that can be analyzed with OTSun. These, and other software capabilities, make OTSun extremely flexible and accurate for the optical analysis of solar devices with arbitrary geometry. Additionally, OTSun has a companion webtool, OTSunWebApp, that allows for the usage of certain features of the package without the need to install anything locally. We also show here two numerical experiments that we performed in order to validate the model and implementation: The analysis of the optical efficiency of a Linear Fresnel Reflector (with moving objects), and of a second surface mirror (with variable wavelengths). In each case, the numerical computations had deviations of less than 0.25% from reference models (either computed with another program or with exact formulas).


Assuntos
Óptica e Fotônica/instrumentação , Linguagens de Programação , Software , Energia Solar , Temperatura , Algoritmos , Modelos Teóricos , Reprodutibilidade dos Testes
5.
Artigo em Inglês | MEDLINE | ID: mdl-30703035

RESUMO

Phylogenetic networks provide a mathematical model to represent the evolution of a set of species where, apart from speciation, reticulate evolutionary events have to be taken into account. Among these events, lateral gene transfers need special consideration due to the asymmetry in the roles of the species involved in such an event. To take into account this asymmetry, LGT networks were introduced. Contrarily to the case of phylogenetic trees, the combinatorial structure of phylogenetic networks is much less known and difficult to describe. One of the approaches in the literature is to classify them according to their level and find generators of the given level that can be used to recursively generate all networks. In this paper, we adapt the concept of generators to the case of LGT networks. We show how these generators, classified by their level, give rise to simple LGT networks of the specified level, and how any LGT network can be obtained from these simple networks, that act as building blocks of the generic structure. The stochastic models of evolution of phylogenetic networks are also much less studied than those for phylogenetic trees. In this setting, we introduce a novel two-parameter model that generates LGT networks. Finally, we present some computer simulations using this model in order to investigate the complexity of the generated networks, depending on the parameters of the model.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Transferência Genética Horizontal/genética , Modelos Genéticos , Filogenia , Simulação por Computador
6.
PLoS Comput Biol ; 15(10): e1007440, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31596844

RESUMO

[This corrects the article DOI: 10.1371/journal.pcbi.1007347.].

7.
PLoS Comput Biol ; 15(9): e1007347, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31509525

RESUMO

Phylogenetic networks generalize phylogenetic trees by allowing the modelization of events of reticulate evolution. Among the different kinds of phylogenetic networks that have been proposed in the literature, the subclass of binary tree-child networks is one of the most studied ones. However, very little is known about the combinatorial structure of these networks. In this paper we address the problem of generating all possible binary tree-child (BTC) networks with a given number of leaves in an efficient way via reduction/augmentation operations that extend and generalize analogous operations for phylogenetic trees, and are biologically relevant. Since our solution is recursive, this also provides us with a recurrence relation giving an upper bound on the number of such networks. We also show how the operations introduced in this paper can be employed to extend the evolutive history of a set of sequences, represented by a BTC network, to include a new sequence. An implementation in python of the algorithms described in this paper, along with some computational experiments, can be downloaded from https://github.com/bielcardona/TCGenerators.


Assuntos
Biologia Computacional/métodos , Modelos Genéticos , Filogenia , Algoritmos , Simulação por Computador
9.
Math Biosci ; 295: 73-85, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155134

RESUMO

The cophenetic metrics dφ,p, for p ∈ {0} ∪ [1, ∞), are a recent addition to the kit of available distances for the comparison of phylogenetic trees. Based on a fifty years old idea of Sokal and Rohlf, these metrics compare phylogenetic trees on a same set of taxa by encoding them by means of their vectors of cophenetic values of pairs of taxa and depths of single taxa, and then computing the Lp norm of the difference of the corresponding vectors. In this paper we compute the expected value of the square of dφ,2 on the space of fully resolved rooted phylogenetic trees with n leaves, under the Yule and the uniform probability distributions.


Assuntos
Filogenia , Algoritmos , Conceitos Matemáticos , Modelos Estatísticos , Probabilidade , Distribuições Estatísticas
10.
J Math Biol ; 75(6-7): 1669-1692, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28451760

RESUMO

Phylogenetic networks have gained attention from the scientific community due to the evidence of the existence of evolutionary events that cannot be represented using trees. A variant of phylogenetic networks, called LGT networks, models specifically lateral gene transfer events, which cannot be properly represented with generic phylogenetic networks. In this paper we treat the problem of the reconstruction of LGT networks from substructures induced by three leaves, which we call tri-LGT-nets. We first restrict ourselves to a class of LGT networks that are both mathematically treatable and biologically significant, called BAN-LGT networks. Then, we study the decomposition of such networks in subnetworks with three leaves and ask whether or not this decomposition determines the network. The answer to this question is negative, but if we further impose time-consistency (species involved in a later gene transfer must coexist) the answer is affirmative, up to some redundancy that can never be recovered but is fully characterized.


Assuntos
Transferência Genética Horizontal , Modelos Genéticos , Filogenia , Simulação por Computador , Evolução Molecular , Redes Reguladoras de Genes , Conceitos Matemáticos
11.
J Theor Biol ; 418: 129-137, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28111320

RESUMO

In phylogenomics, reconciliations aim at explaining the discrepancies between the evolutionary histories of genes and species. Several reconciliation models are available when the evolution of the species of interest is modelled via phylogenetic trees; the most commonly used are the DL model, accounting for duplications and losses in gene evolution and yielding polynomially-solvable problems, and the DTL model, which also accounts for gene transfers and implies NP-hard problems. However, when dealing with non-tree-like evolutionary events such as hybridisations, phylogenetic networks - and not phylogenetic trees - should be used to model species evolution. Reconciliation models involving phylogenetic networks are still at their early days. In this paper, we propose a new reconciliation model in which the evolution of species is modelled by a special kind of phylogenetic networks - the LGT networks. Our model considers duplications, losses and transfers of genes, but restricts transfers to happen through some specific arcs of the network, called secondary arcs. Moreover, we provide a polynomial algorithm to compute the most parsimonious reconciliation between a gene tree and an LGT network under this model. Our method, when combined with quartet decomposition methods to detect putative "highways" of transfers, permits to refine their analyses by allowing to examine the two possible directions of a highway and even consider combinations of highways.


Assuntos
Algoritmos , Evolução Molecular , Redes Reguladoras de Genes/fisiologia , Modelos Genéticos , Filogenia
12.
Algorithms Mol Biol ; 10: 28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691555

RESUMO

BACKGROUND: Lateral, or Horizontal, Gene Transfers are a type of asymmetric evolutionary events where genetic material is transferred from one species to another. In this paper we consider LGT networks, a general model of phylogenetic networks with lateral gene transfers which consist, roughly, of a principal rooted tree with its leaves labelled on a set of taxa, and a set of extra secondary arcs between nodes in this tree representing lateral gene transfers. An LGT network gives rise in a natural way to a principal phylogenetic subtree and a set of secondary phylogenetic subtrees, which, roughly, represent, respectively, the main line of evolution of most genes and the secondary lines of evolution through lateral gene transfers. RESULTS: We introduce a set of simple conditions on an LGT network that guarantee that its principal and secondary phylogenetic subtrees are pairwise different and that these subtrees determine, up to isomorphism, the LGT network. We then give an algorithm that, given a set of pairwise different phylogenetic trees [Formula: see text] on the same set of taxa, outputs, when it exists, the LGT network that satisfies these conditions and such that its principal phylogenetic tree is [Formula: see text] and its secondary phylogenetic trees are [Formula: see text].

13.
ScientificWorldJournal ; 2014: 254279, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24982934

RESUMO

Several polynomial time computable metrics on the class of semibinary tree-sibling time consistent phylogenetic networks are available in the literature; in particular, the problem of deciding if two networks of this kind are isomorphic is in P. In this paper, we show that if we remove the semibinarity condition, then the problem becomes much harder. More precisely, we prove that the isomorphism problem for generic tree-sibling time consistent phylogenetic networks is polynomially equivalent to the graph isomorphism problem. Since the latter is believed not to belong to P, the chances are that it is impossible to define a metric on the class of all tree-sibling time consistent phylogenetic networks that can be computed in polynomial time.


Assuntos
Algoritmos , Filogenia , Biologia Computacional , Humanos
14.
BMC Bioinformatics ; 14: 3, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23323711

RESUMO

BACKGROUND: Phylogenetic tree comparison metrics are an important tool in the study of evolution, and hence the definition of such metrics is an interesting problem in phylogenetics. In a paper in Taxon fifty years ago, Sokal and Rohlf proposed to measure quantitatively the difference between a pair of phylogenetic trees by first encoding them by means of their half-matrices of cophenetic values, and then comparing these matrices. This idea has been used several times since then to define dissimilarity measures between phylogenetic trees but, to our knowledge, no proper metric on weighted phylogenetic trees with nested taxa based on this idea has been formally defined and studied yet. Actually, the cophenetic values of pairs of different taxa alone are not enough to single out phylogenetic trees with weighted arcs or nested taxa. RESULTS: For every (rooted) phylogenetic tree T, let its cophenetic vectorφ(T) consist of all pairs of cophenetic values between pairs of taxa in T and all depths of taxa in T. It turns out that these cophenetic vectors single out weighted phylogenetic trees with nested taxa. We then define a family of cophenetic metrics dφ,p by comparing these cophenetic vectors by means of Lp norms, and we study, either analytically or numerically, some of their basic properties: neighbors, diameter, distribution, and their rank correlation with each other and with other metrics. CONCLUSIONS: The cophenetic metrics can be safely used on weighted phylogenetic trees with nested taxa and no restriction on degrees, and they can be computed in O(n2) time, where n stands for the number of taxa. The metrics dφ,1 and dφ,2 have positive skewed distributions, and they show a low rank correlation with the Robinson-Foulds metric and the nodal metrics, and a very high correlation with each other and with the splitted nodal metrics. The diameter of dφ,p, for p⩾1 , is in O(n(p+2)/p), and thus for low p they are more discriminative, having a wider range of values.


Assuntos
Filogenia , Evolução Biológica
15.
J Math Biol ; 67(6-7): 1833-46, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23117499

RESUMO

One of the main applications of balance indices is in tests of nullmodels of evolutionary processes. The knowledge of an exact formula for a statistic of a balance index, holding for any number n of leaves, is necessary in order to use this statistic in tests of this kind involving trees of any size. In this paper we obtain exact formulas for the variance under the Yule model of the Sackin, the Colless and the total cophenetic indices of binary rooted phylogenetic trees with n leaves.


Assuntos
Evolução Biológica , Modelos Genéticos , Filogenia
16.
Artigo em Inglês | MEDLINE | ID: mdl-20660951

RESUMO

Galled trees, directed acyclic graphs that model evolutionary histories with isolated hybridization events, have become very popular due to both their biological significance and the existence of polynomial-time algorithms for their reconstruction. In this paper, we establish to which extent several distance measures for the comparison of evolutionary networks are metrics for galled trees, and hence, when they can be safely used to evaluate galled tree reconstruction methods.


Assuntos
Filogenia , Biologia Computacional/métodos , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Hibridização Genética , Modelos Genéticos
17.
J Math Biol ; 61(2): 253-276, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19760227

RESUMO

Dissimilarity measures for (possibly weighted) phylogenetic trees based on the comparison of their vectors of path lengths between pairs of taxa, have been present in the systematics literature since the early seventies. For rooted phylogenetic trees, however, these vectors can only separate non-weighted binary trees, and therefore these dissimilarity measures are metrics only on this class of rooted phylogenetic trees. In this paper we overcome this problem, by splitting in a suitable way each path length between two taxa into two lengths. We prove that the resulting splitted path lengths matrices single out arbitrary rooted phylogenetic trees with nested taxa and arcs weighted in the set of positive real numbers. This allows the definition of metrics on this general class of rooted phylogenetic trees by comparing these matrices through metrics in spaces M(n)(R) of real-valued n x n matrices. We conclude this paper by establishing some basic facts about the metrics for non-weighted phylogenetic trees defined in this way using L(p) metrics on M(n)(R), with p [epsilon] R(>0).


Assuntos
Modelos Genéticos , Filogenia , Algoritmos , Distribuições Estatísticas
18.
Artigo em Inglês | MEDLINE | ID: mdl-19875855

RESUMO

Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of nontreelike evolutionary events, like recombination, hybridization, or lateral gene transfer. While much progress has been made to find practical algorithms for reconstructing a phylogenetic network from a set of sequences, all attempts to endorse a class of phylogenetic networks (strictly extending the class of phylogenetic trees) with a well-founded distance measure have, to the best of our knowledge and with the only exception of the bipartition distance on regular networks, failed so far. In this paper, we present and study a new meaningful class of phylogenetic networks, called tree-child phylogenetic networks, and we provide an injective representation of these networks as multisets of vectors of natural numbers, their path multiplicity vectors. We then use this representation to define a distance on this class that extends the well-known Robinson-Foulds distance for phylogenetic trees and to give an alignment method for pairs of networks in this class. Simple polynomial algorithms for reconstructing a tree-child phylogenetic network from its path multiplicity vectors, for computing the distance between two tree-child phylogenetic networks and for aligning a pair of tree-child phylogenetic networks, are provided. They have been implemented as a Perl package and a Java applet, which can be found at http://bioinfo.uib.es/~recerca/phylonetworks/mudistance/.


Assuntos
Biologia Computacional/métodos , Algoritmos , Computadores , Interpretação Estatística de Dados , Humanos , Internet , Modelos Genéticos , Modelos Estatísticos , Modelos Teóricos , Filogenia , Linguagens de Programação , Alinhamento de Sequência/métodos , Software
19.
Artigo em Inglês | MEDLINE | ID: mdl-19875861

RESUMO

We prove that Nakhleh's metric for reduced phylogenetic networks is also a metric on the classes of tree-child phylogenetic networks, semibinary tree-sibling time consistent phylogenetic networks, and multilabeled phylogenetic trees. We also prove that it separates distinguishable phylogenetic networks. In this way, it becomes the strongest dissimilarity measure for phylogenetic networks available so far. Furthermore, we propose a generalization of that metric that separates arbitrary phylogenetic networks.


Assuntos
Biologia Computacional/métodos , Filogenia , Algoritmos , Animais , Evolução Molecular , Humanos , Modelos Genéticos , Modelos Teóricos , Hibridização de Ácido Nucleico , Recombinação Genética , Alinhamento de Sequência , Análise de Sequência de DNA
20.
Artigo em Inglês | MEDLINE | ID: mdl-19644173

RESUMO

The assessment of phylogenetic network reconstruction methods requires the ability to compare phylogenetic networks. This is the second in a series of papers devoted to the analysis and comparison of metrics for tree-child time consistent phylogenetic networks on the same set of taxa. In this paper, we generalize to phylogenetic networks two metrics that have already been introduced in the literature for phylogenetic trees: the nodal distance and the triplets distance. We prove that they are metrics on any class of tree-child time consistent phylogenetic networks on the same set of taxa, as well as some basic properties for them. To prove these results, we introduce a reduction/expansion procedure that can be used not only to establish properties of tree-child time consistent phylogenetic networks by induction, but also to generate all tree-child time consistent phylogenetic networks with a given number of leaves.


Assuntos
Modelos Genéticos , Filogenia , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA