Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Biochimie ; 206: 105-115, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36273763

RESUMO

Snake envenomation is an ongoing global health problem and tropical neglected disease that afflicts millions of people each year. The only specific treatment, antivenom, has several limitations that affects its proper distribution to the victims and its efficacy against local effects, such as myonecrosis. The main responsible for this consequence are the phospholipases A2 (PLA2) and PLA2-like proteins, such as BthTX-I from Bothrops jararacussu. Folk medicine resorts to plants such as Tabernaemontana catharinensis to palliate these and other snakebite effects. Here, we evaluated the effect of its root bark extract and one of its isolated compounds, 12-methoxy-4-methyl-voachalotine (MMV), against the in vitro paralysis and muscle damage induced by BthTX-I. Secondary and quaternary structures of BthTX-I were not modified by the interaction with MMV. Instead, this compound interacted in an unprecedented way with the region inside the toxin hydrophobic channel and promoted a structural change in Val31, loop 58-71 and Membrane Disruption Site. Thus, we hypothesize that MMV inhibits PLA2-like proteins by preventing entrance of fatty acid into the hydrophobic channel. These data may explain the traditional use of T. catharinensis extract and confirm MMV as a promising candidate to complement antivenom or a structural guide to develop more effective inhibitors.


Assuntos
Bothrops , Venenos de Crotalídeos , Tabernaemontana , Animais , Antivenenos/farmacologia , Antivenenos/química , Tabernaemontana/metabolismo , Fosfolipases A2/química , Venenos de Serpentes , Venenos de Crotalídeos/química , Bothrops/metabolismo
2.
Int J Biol Macromol ; 185: 494-512, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34197854

RESUMO

Snakebite envenoming is the cause of an ongoing health crisis in several regions of the world, particularly in tropical and neotropical countries. This scenario creates an urgent necessity for new practical solutions to address the limitations of current therapies. The current study investigated the isolation, phytochemical characterization, and myotoxicity inhibition mechanism of gallic acid (GA), a myotoxin inhibitor obtained from Anacardium humile. The identification and isolation of GA was achieved by employing analytical chromatographic separation, which exhibited a compound with retention time and nuclear magnetic resonance spectra compatible with GA's commercial standard and data from the literature. GA alone was able to inhibit the myotoxic activity induced by the crude venom of Bothrops jararacussu and its two main myotoxins, BthTX-I and BthTX-II. Circular dichroism (CD), fluorescence spectroscopy (FS), dynamic light scattering (DLS), and interaction studies by molecular docking suggested that GA forms a complex with BthTX-I and II. Surface plasmon resonance (SPR) kinetics assays showed that GA has a high affinity for BthTX-I with a KD of 9.146 × 10-7 M. Taken together, the two-state reaction mode of GA binding to BthTX-I, and CD, FS and DLS assays, suggest that GA is able to induce oligomerization and secondary structure changes for BthTX-I and -II. GA and other tannins have been shown to be effective inhibitors of snake venoms' toxic effects, and herein we demonstrated GA's ability to bind to and inhibit a snake venom PLA2, thus proposing a new mechanism of PLA2 inhibition, and presenting more evidence of GA's potential as an antivenom compound.


Assuntos
Anacardium/química , Ácido Gálico/farmacologia , Miotoxicidade/tratamento farmacológico , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2/metabolismo , Venenos de Serpentes/enzimologia , Animais , Modelos Animais de Doenças , Ácido Gálico/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Miotoxicidade/enzimologia , Miotoxicidade/etiologia , Inibidores de Fosfolipase A2/química , Fosfolipases A2/química , Caules de Planta/química , Proteínas de Répteis/química , Proteínas de Répteis/metabolismo , Ressonância de Plasmônio de Superfície
3.
Biochimie ; 181: 145-153, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33333169

RESUMO

Snakebite envenomation has been categorized by World Health Organization as a category A neglected tropical disease, since it causes chronic psychological disorders, physical disablement and death. Ophidian accidents may cause local myonecrosis that cause drastic sequelae, which are not efficiently neutralized via serum therapy. Phospholipase A2-like (PLA2-like) myotoxins have a major role in the local effects caused by several snake venoms. We previously demonstrated that chicoric acid (CA) is an efficient inhibitor of the BthTX-I myotoxin and solved the X-ray structure of complex. Herein, we assess the oligomeric behavior of the BthTX-I/CA complex in solution under different physical-chemical conditions and using toxin obtained by two different biochemical methodologies to fully elucidate structural bases of inhibition of myotoxins by CA. We demonstrated the ability of PLA2-like proteins to form different oligomeric assemblies in the presence of certain inhibitors, which can also be modulated by buffer polarity change. In the presence of ethanol, BthTX-I/CA remains predominantly in a monomeric conformation, which prevents it from being in its active form (dimeric conformation). In contrast, in the absence of ethanol, the tetramer assembly was observed, which hid key regions of the protein responsible for docking and disruption of the muscle membrane. Therefore, the "plasticity" of these proteins with regard to their abilities to form oligomeric assemblies is a key issue for the future development of therapeutic agents to complement of serum therapy.


Assuntos
Ácidos Cafeicos/química , Venenos de Crotalídeos/química , Fosfolipases A2/química , Multimerização Proteica , Succinatos/química , Venenos de Crotalídeos/antagonistas & inibidores
4.
Sci Rep ; 10(1): 16252, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004851

RESUMO

The activation process of phospholipase A2-like (PLA2-like) toxins is a key step in their molecular mechanism, which involves oligomeric changes leading to the exposure of specific sites. Few studies have focused on the characterization of allosteric activators and the features that distinguish them from inhibitors. Herein, a comprehensive study with the BthTX-I toxin from Bothrops jararacussu venom bound or unbound to α-tocopherol (αT) was carried out. The oligomerization state of BthTX-I bound or unbound to αT in solution was studied and indicated that the toxin is predominantly monomeric but tends to oligomerize when complexed with αT. In silico molecular simulations showed the toxin presents higher conformational changes in the absence of αT, which suggests that it is important to stabilize the structure of the toxin. The transition between the two states (active/inactive) was also studied, showing that only the unbound BthTX-I system could migrate to the inactive state. In contrast, the presence of αT induces the toxin to leave the inactive state, guiding it towards the active state, with more regions exposed to the solvent, particularly its active site. Finally, the structural determinants necessary for a molecule to be an inhibitor or activator were analyzed in light of the obtained results.


Assuntos
Bothrops , Venenos de Crotalídeos/química , Regulação Alostérica , Animais , Simulação por Computador , Difusão Dinâmica da Luz , Simulação de Dinâmica Molecular , Fosfolipases A2/química , Multimerização Proteica
5.
N Engl J Med ; 383(21): 2041-2052, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32706953

RESUMO

BACKGROUND: Hydroxychloroquine and azithromycin have been used to treat patients with coronavirus disease 2019 (Covid-19). However, evidence on the safety and efficacy of these therapies is limited. METHODS: We conducted a multicenter, randomized, open-label, three-group, controlled trial involving hospitalized patients with suspected or confirmed Covid-19 who were receiving either no supplemental oxygen or a maximum of 4 liters per minute of supplemental oxygen. Patients were randomly assigned in a 1:1:1 ratio to receive standard care, standard care plus hydroxychloroquine at a dose of 400 mg twice daily, or standard care plus hydroxychloroquine at a dose of 400 mg twice daily plus azithromycin at a dose of 500 mg once daily for 7 days. The primary outcome was clinical status at 15 days as assessed with the use of a seven-level ordinal scale (with levels ranging from one to seven and higher scores indicating a worse condition) in the modified intention-to-treat population (patients with a confirmed diagnosis of Covid-19). Safety was also assessed. RESULTS: A total of 667 patients underwent randomization; 504 patients had confirmed Covid-19 and were included in the modified intention-to-treat analysis. As compared with standard care, the proportional odds of having a higher score on the seven-point ordinal scale at 15 days was not affected by either hydroxychloroquine alone (odds ratio, 1.21; 95% confidence interval [CI], 0.69 to 2.11; P = 1.00) or hydroxychloroquine plus azithromycin (odds ratio, 0.99; 95% CI, 0.57 to 1.73; P = 1.00). Prolongation of the corrected QT interval and elevation of liver-enzyme levels were more frequent in patients receiving hydroxychloroquine, alone or with azithromycin, than in those who were not receiving either agent. CONCLUSIONS: Among patients hospitalized with mild-to-moderate Covid-19, the use of hydroxychloroquine, alone or with azithromycin, did not improve clinical status at 15 days as compared with standard care. (Funded by the Coalition Covid-19 Brazil and EMS Pharma; ClinicalTrials.gov number, NCT04322123.).


Assuntos
Antivirais/administração & dosagem , Azitromicina/administração & dosagem , Infecções por Coronavirus/tratamento farmacológico , Hidroxicloroquina/administração & dosagem , Pneumonia Viral/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antivirais/uso terapêutico , Azitromicina/uso terapêutico , Betacoronavirus , Brasil , COVID-19 , Quimioterapia Combinada , Feminino , Hospitalização , Humanos , Hidroxicloroquina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Pandemias , Gravidade do Paciente , SARS-CoV-2 , Falha de Tratamento , Tratamento Farmacológico da COVID-19
6.
Biochimie ; 170: 163-172, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31978419

RESUMO

Envenoming by snakebite is an important global health issue that has received little attention, leading the World Health Organization to naming it as neglected tropical disease. Several snakebites present serious local symptoms manifested on victims that may not be efficiently neutralized by serum therapy. Phospholipase A2-like (PLA2-like) toxins are present in Viperidae venoms and are responsible for local myotoxic activity. Herein, we investigated the association between BthTX-I toxin and caftaric acid (CFT), a molecule present in plants. CFT neutralized neuromuscular blocking and muscle-damaging activities promoted by BthTX-I. Calorimetric and light-scattering assays demonstrated that CFT inhibitor interacted with dimeric BthTX-I. Bioinformatics simulations indicated that CFT inhibitor binds to the toxin's hydrophobic channel (HCh). According to the current myotoxic mechanism, three different regions of PLA2-like toxins have specific tasks: protein allosteric activation (HCh), membrane dockage (MDoS), and membrane rupture (MDiS). We propose CFT inhibitor interferes with the allosteric activation, which is related to the conformation change leading to the exposure/alignment of MDoS/MDiS region. This is the first report of a PLA2-like toxin fully inhibited by a compound that interacts only with its HCh region. Thus, CFT is a novel candidate to complement serum therapy and improve the treatment of snakebite.


Assuntos
Venenos de Crotalídeos/toxicidade , Miotoxicidade/tratamento farmacológico , Bloqueadores Neuromusculares/toxicidade , Fenóis/farmacologia , Fosfolipases A2/química , Animais , Masculino , Camundongos , Miotoxicidade/etiologia , Fosfolipases A2/metabolismo , Conformação Proteica
7.
Biochim Biophys Acta Gen Subj ; 1862(12): 2728-2737, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251662

RESUMO

BACKGROUND: Specific compounds found in vegetal species have been demonstrated to be efficient inhibitors of snake toxins, such as phospholipase A2-like (PLA2-like) proteins. These particular proteins, present in several species of vipers (Viperidae), induce a severe local myotoxic effect in prey and human victims, and this effect is often not efficiently neutralized by the regular serum therapy. PLA2-like proteins have been functionally and structurally studied since the early 1990s; however, a comprehensive molecular mechanism was proposed only recently. METHODS: Myographic and histological techniques were used to evaluate the inhibitory effect of chicoric acid (CA) against BthTX-I myotoxin. Isothermal titration calorimetry assays were used to measure the affinity between the inhibitor and the toxin. X-ray crystallography was used to reveal details of this interaction. RESULTS: CA prevented the blockade of indirectly evoked muscle contraction and inhibited muscle damage induced by BthTX-I. The inhibitor binds to the toxin with the highest affinity measured for a natural compound in calorimetric assays. The crystal structure and molecular dynamics simulations demonstrated that CA binds at the entrance of the hydrophobic channel of the toxin and binds to one of the clusters that participates in membrane disruption. CONCLUSIONS: CA prevents the myotoxic activity of the toxin, preventing its activation by simultaneous binding with two critical regions. GENERAL SIGNIFICANCE: CA is a potential myotoxic inhibitor to other PLA2-like proteins and a possible candidate to complement serum therapy.


Assuntos
Ácidos Cafeicos/farmacologia , Venenos de Crotalídeos/antagonistas & inibidores , Músculos/efeitos dos fármacos , Fosfolipases A2/metabolismo , Succinatos/farmacologia , Animais , Bothrops , Ácidos Cafeicos/química , Venenos de Crotalídeos/química , Venenos de Crotalídeos/metabolismo , Venenos de Crotalídeos/toxicidade , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular , Contração Muscular/efeitos dos fármacos , Músculos/patologia , Succinatos/química
8.
Int J Biol Macromol ; 102: 571-581, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28390830

RESUMO

Snake venoms contain various proteins, especially phospholipases A2 (PLA2s), which present potential applications in diverse areas of health and medicine. In this study, a new basic PLA2 from Bothrops marajoensis with parasiticidal activity was purified and characterized biochemically and biologically. B. marajoensis venom was fractionated through cation exchange followed by reverse phase chromatographies. The isolated toxin, BmajPLA2-II, was structurally characterized with MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) mass spectrometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by two-dimensional electrophoresis, partial amino acid sequencing, an enzymatic activity assay, circular dichroism, and dynamic light scattering assays. These structural characterization tests presented BmajPLA2-II as a basic Lys49 PLA2 homologue, compatible with other basic snake venom PLA2s (svPLA2), with a tendency to form aggregations. The in vitro anti-parasitic potential of B. marajoensis venom and of BmajPLA2-II was evaluated against Leishmania infantum promastigotes and Trypanosoma cruzi epimastigotes, showing significant activity at a concentration of 100µg/mL. The venom and BmajPLA2-II presented IC50 of 0.14±0.08 and 6.41±0.64µg/mL, respectively, against intraerythrocytic forms of Plasmodium falciparum with CC50 cytotoxicity values against HepG2 cells of 43.64±7.94 and >150µg/mL, respectively. The biotechnological potential of these substances in relation to leishmaniasis, Chagas disease and malaria should be more deeply investigated.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Bothrops , Venenos de Crotalídeos/enzimologia , Fosfolipases A2/química , Fosfolipases A2/farmacologia , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , Antiprotozoários/metabolismo , Fosfolipases A2/metabolismo , Tripsina/metabolismo
9.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3199-3209, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27531710

RESUMO

BACKGROUND: One of the main challenges in snakebite envenomation treatment is the development of stable, versatile and efficient anti-venom therapies. Local myotoxicity in accidents involving snakes from the Bothrops genus is still a consequence of serum therapy inefficient neutralization that may lead to permanent sequelae in their victims. One of the classes of toxins that participate in muscle necrosis is the PLA2-like proteins. The aim of this work was to investigate the role of zinc ions in the inhibition of PLA2-like proteins and to advance the current knowledge of their action mechanism. METHODS: Myographic and electrophysiological techniques were used to evaluate the inhibitory effect of zinc ions, isothermal titration calorimetry assays were used to measure the affinity between zinc ions and the toxin and X-ray crystallography was used to reveal details of this interaction. RESULTS: We demonstrated that zinc ions can effectively inhibit the toxin by the interaction with two different sites, which are related to two different mechanism of inhibition: preventing membrane disruption and impairing the toxin state transition. Furthermore, structural study presented here included an additional step in the current myotoxic mechanism improving the comprehension of the allosteric transition that PLA2-like proteins undergo to exert their function. CONCLUSIONS: Our findings show that zinc ions are inhibitors of PLA2-like proteins and suggest two different mechanisms of inhibition for these ions. GENERAL SIGNIFICANCE: Zinc is a new candidate that can assist in anti-venom treatments and can promote the design of new and even more accurate structure-based inhibitors for PLA2-like proteins.


Assuntos
Venenos de Crotalídeos/toxicidade , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2/toxicidade , Zinco/metabolismo , Animais , Bothrops , Calorimetria , Venenos de Crotalídeos/química , Cristalografia por Raios X , Diafragma/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Íons , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Modelos Moleculares , Fosfolipases A2/química , Nervo Frênico/efeitos dos fármacos
10.
Int. J. Biol. Macromol. ; 102: 571-581, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15046

RESUMO

Snake venoms contain various proteins, especially phospholipases A(2) (PLA(2)s), which present potential applications in diverse areas of health and medicine. In this study, a new basic PLA(2) from Bothrops marajoensis with parasiticidal activity was purified and characterized biochemically and biologically. B. marajoensis venom was fractionated through cation exchange followed by reverse phase chromatographies. The isolated toxin, BmajPLA(2)-II, was structurally characterized with MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) mass spectrometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by two-dimensional electrophoresis, partial amino acid sequencing, an enzymatic activity assay, circular dichroism, and dynamic light scattering assays. These structural characterization tests presented BmajPLA(2)-II as a basic Lys49 PLA(2) homologue, compatible with other basic snake venom PLA(2)s (svPLA(2)), with a tendency to form aggregations. The in vitro anti-parasitic potential of B. marajoensis venom and of BmajPLA(2)-II was evaluated against Leishmania infantum promastigotes and Trypanosoma cruzi epimastigotes, showing significant activity at a concentration of 100 mu g/mL. The venom and BmajPLA(2)-II presented IC50 of 0.14 +/- 0.08 and 6.41 +/- 0.64 mu g/mL, respectively, against intraerythrocytic forms of Plasmodium falciparum with CC50 cytotoxicity values against HepG2 cells of 43.64 +/- 1 7.94 and >150 mu g/mL, respectively. The biotechnological potential of these substances in relation to leishmaniasis, Chagas disease and malaria should be more deeply investigated.

11.
PLoS One ; 6(12): e28521, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22205953

RESUMO

Snakebite envenoming is an important public health problem in many tropical and subtropical countries, and is considered a neglected tropical disease by the World Health Organization. Most severe cases are inflicted by species of the families Elapidae and Viperidae, and lead to a number of systemic and local effects in the victim. One of the main problems regarding viperidic accidents is prominent local tissue damage whose pathogenesis is complex and involves the combined actions of a variety of venom components. Phospholipases A2 (PLA2s) are the most abundant muscle-damaging components of these venoms. Herein, we report functional and structural studies of PrTX-I, a Lys49-PLA2 from Bothops pirajai snake venom, and the influence of rosmarinic acid (RA) upon this toxin's activities. RA is a known active component of some plant extracts and has been reported as presenting anti-myotoxic properties related to bothopic envenomation. The myotoxic activity of Lys49-PLA2s is well established in the literature and although no in vivo neurotoxicity has been observed among these toxins, in vitro neuromuscular blockade has been reported for some of these proteins. Our in vitro studies show that RA drastically reduces both the muscle damage and the neuromuscular blockade exerted by PrTX-I on mice neuromuscular preparations (by ∼80% and ∼90%, respectively). These results support the hypothesis that the two effects are closely related and lead us to suggest that they are consequences of the muscle membrane-destabilizing activity of the Lys49-PLA2. Although the C-terminal region of these proteins has been reported to comprise the myotoxic site, we demonstrate by X-ray crystallographic studies that RA interacts with PrTX-I in a different region. Consequently, a new mode of Lys49-PLA2 inhibition is proposed. Comparison of our results with others in the literature suggests possible new ways to inhibit bothropic snake venom myotoxins and improve serum therapy.


Assuntos
Bothrops , Cinamatos/metabolismo , Cinamatos/farmacologia , Depsídeos/metabolismo , Depsídeos/farmacologia , Lisina , Fosfolipases A2/química , Fosfolipases A2/metabolismo , Animais , Venenos de Crotalídeos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Modelos Moleculares , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Fármacos Neuromusculares/antagonistas & inibidores , Fármacos Neuromusculares/química , Fármacos Neuromusculares/metabolismo , Fármacos Neuromusculares/toxicidade , Inibidores de Fosfolipase A2 , Fosfolipases A2/toxicidade , Ligação Proteica , Conformação Proteica , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA