Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1178339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593238

RESUMO

Purpose: The purpose of this study was to anatomically correlate ventilation defects with regions of air trapping by whole lung, lung lobe, and airway segment in the context of airway mucus plugging in asthma. Methods: A total of 34 asthmatics [13M:21F, 13 mild/moderate, median age (range) of 49.5 (36.8-53.3) years and 21 severe, 56.1 (47.1-62.6) years] and 4 healthy subjects [1M:3F, 38.5 (26.6-52.2) years] underwent HP 3He MRI and CT imaging. HP 3He MRI was assessed for ventilation defects using a semi-automated k-means clustering algorithm. Inspiratory and expiratory CTs were analyzed using parametric response mapping (PRM) to quantify markers of emphysema and functional small airways disease (fSAD). Segmental and lobar lung masks were obtained from CT and registered to HP 3He MRI in order to localize ventilation defect percent (VDP), at the lobar and segmental level, to regions of fSAD and mucus plugging. Spearman's correlation was utilized to compare biomarkers on a global and lobar level, and a multivariate analysis was conducted to predict segmental fSAD given segmental VDP (sVDP) and mucus score as variables in order to further understand the functional relationships between regional measures of obstruction. Results: On a global level, fSAD was correlated with whole lung VDP (r = 0.65, p < 0.001), mucus score (r = 0.55, p < 0.01), and moderately correlated (-0.60 ≤ r ≤ -0.56, p < 0.001) to percent predicted (%p) FEV1, FEF25-75 and FEV1/FVC, and more weakly correlated to FVC%p (-0.38 ≤ r ≤ -0.35, p < 0.001) as expected from previous work. On a regional level, lobar VDP, mucus scores, and fSAD were also moderately correlated (r from 0.45-0.66, p < 0.01). For segmental colocalization, the model of best fit was a piecewise quadratic model, which suggests that sVDP may be increasing due to local airway obstruction that does not manifest as fSAD until more extensive disease is present. sVDP was more sensitive to the presence of a mucus plugs overall, but the prediction of fSAD using multivariate regression showed an interaction in the presence of a mucus plugs when sVDP was between 4% and 10% (p < 0.001). Conclusion: This multi-modality study in asthma confirmed that areas of ventilation defects are spatially correlated with air trapping at the level of the airway segment and suggests VDP and fSAD are sensitive to specific sources of airway obstruction in asthma, including mucus plugs.

2.
Radiology ; 303(1): 184-190, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931858

RESUMO

Background Airway mucus plugs in asthma are associated with exacerbation frequency, increased eosinophilia, and reduced lung function. The relationship between mucus plugs and spatially overlapping ventilation abnormalities observed at hyperpolarized gas MRI has not been assessed quantitatively. Purpose To assess regional associations between CT mucus plugs scored by individual bronchopulmonary segment and corresponding measurements of segmental ventilation defect percentage (VDP) at hyperpolarized helium 3 (3He) MRI. Materials and Methods In this secondary analysis of a Health Insurance Portability and Accountability Act-compliant prospective observational cohort, participants in the Severe Asthma Research Program (SARP) III (NCT01760915) between December 2012 and August 2015 underwent hyperpolarized 3He MRI to determine segmental VDP. Segmental mucus plugs at CT were scored by two readers, with segments scored as plugged only if both readers agreed independently. A linear mixed-effects model controlling for interpatient variability was then used to assess differences in VDP in plugged versus plug-free segments. Results Forty-four participants with asthma were assessed (mean age ± standard deviation, 47 years ± 15; 29 women): 19 with mild-to-moderate asthma and 25 with severe asthma. Mucus plugs were observed in 49 total bronchopulmonary segments across eight of 44 patients. Segments containing mucus plugs had a median segmental VDP of 25.9% (25th-75th percentile, 7.3%-38.3%) versus 1.4% (25th-75th percentile, 0.1%-5.2%; P < .001) in plug-free segments. Similarly, the model estimated a segmental VDP of 18.9% (95% CI: 15.7, 22.2) for mucus-plugged segments versus 5.1% (95% CI: 3.3, 7.0) for plug-free segments (P < .001). Participants with one or more mucus plugs had a median whole-lung VDP of 11.1% (25th-75th percentile, 7.1%-18.9%) versus 3.1% (25th-75th percentile, 1.1%-4.4%) in those without plugs (P < .001). Conclusion Airway mucus plugging at CT was associated with reduced ventilation in the same bronchopulmonary segment at hyperpolarized helium 3 MRI, suggesting that mucus plugging may be an important cause of ventilation defects in asthma. © RSNA, 2021 Online supplemental material is available for this article.


Assuntos
Asma , Transtornos Respiratórios , Asma/diagnóstico por imagem , Feminino , Hélio , Humanos , Pulmão , Imageamento por Ressonância Magnética/métodos , Masculino , Muco/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
3.
J Allergy Clin Immunol ; 146(4): 831-839.e6, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32173351

RESUMO

BACKGROUND: There is an unmet need for an objective biomarker to predict asthma exacerbations. OBJECTIVE: Our aim was to assess the ventilation defect percent (VDP) on hyperpolarized helium-3 magnetic resonance imaging as a predictor of exacerbation frequency following imaging. METHODS: Subjects underwent hyperpolarized helium-3 and conventional clinical measurements, including pulmonary function tests, during a period of disease stability, and exacerbations were recorded prospectively over the following 2 years. We used a Poisson regression tree model to estimate an optimal VDP threshold for classifying subjects into high- versus low-exacerbation groups and then used statistical regression to compare this VDP threshold against conventional clinical measures as predictors of exacerbations. RESULTS: A total of 67 individuals with asthma (27 males and 40 females, 28 with mild-to-moderate asthma and 39 with severe asthma) had a median VDP of 3.75% (1.2% [first quartile]-7.9% [third quartile]). An optimal VDP threshold of 4.28% was selected on the basis of the maximum likelihood estimation of the regression tree model. Subjects with a VDP greater than 4.28% (n = 32) had a median of 1.5 exacerbations versus 0.0 for subjects with a VDP less than 4.28% (n = 35). In a stepwise multivariate regression model, a VDP greater than 4.28% was associated with an exacerbation incidence rate ratio of 2.5 (95% CI = 1.3-4.7) versus a VDP less than or equal to 4.28%. However, once individual medical history was included in the model, VDP was no longer significant. Nonetheless, VDP may provide an objective and complementary quantitative marker of individual exacerbation risk that is useful for monitoring individual change in disease status, selecting patients for therapy, and assessing treatment response. CONCLUSION: VDP measured with magnetic resonance imaging shows promise as a biomarker of prospective asthma exacerbations.


Assuntos
Asma/diagnóstico por imagem , Asma/fisiopatologia , Hélio , Isótopos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética , Adulto , Asma/terapia , Biomarcadores , Progressão da Doença , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Prognóstico , Testes de Função Respiratória , Índice de Gravidade de Doença , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA