Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 13(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925633

RESUMO

(1) Purpose: Performing strenuous exercises negatively impacts the immune and gastrointestinal systems. These alterations cause transient immunodepression, increasing the risk of minor infections, especially in the upper respiratory tract. Recent studies have shown that supplementation of probiotics confers benefits to athletes. Therefore, the objective of the current study was to verify the effects of probiotic supplementation on cytokine production by monocytes and infections in the upper respiratory tract after an acute strenuous exercise. (2) Methods: Fourteen healthy male marathon runners received either 5 billion colony forming units (CFU) of a multi-strain probiotic, consisting of 1 billion CFU of each of Lactobacillus acidophilus LB-G80, Lactobacillus paracasei LPc-G110, Lactococcus subp. lactis LLL-G25, Bifidobacterium animalis subp. lactis BL-G101, and Bifidobacterium bifidum BB-G90, or a placebo for 30 days before a marathon. Plasma cytokines, salivary parameters, glucose, and glutamine were measured at baseline, 24 h before, immediately after, and 1 h after the race. Subjects self-reported upper respiratory tract infection (URTI) using the Wisconsin Upper Respiratory Symptom Survey (WURSS-21). The statistical analyses comprised the general linear model (GLM) test followed by the Tukey post hoc and Student's t-test with p < 0.05. (3) Results: URTI symptoms were significantly lower in the probiotic group compared to placebo. The IL-2 and IL-4 plasma cytokines were lower 24 h before exercise, while the other cytokines showed no significant differences. A lower level of IL-6 produced by monocytes was verified immediately after the race and higher IL-10 at 1 h post. No differences were observed in salivary parameters. Conclusion: Despite the low number of marathoners participating in the study, probiotic supplementation suggests its capability to preserve the functionality of monocytes and mitigate the incidence of URTI.


Assuntos
Atletas/estatística & dados numéricos , Citocinas/sangue , Corrida de Maratona , Monócitos/metabolismo , Probióticos/farmacologia , Infecções Respiratórias/prevenção & controle , Adulto , Citocinas/efeitos dos fármacos , Citocinas/imunologia , Método Duplo-Cego , Humanos , Masculino , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Infecções Respiratórias/imunologia
2.
Physiol Behav ; 196: 95-103, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30170170

RESUMO

This work evaluated the effects of moderate physical exercise performed under hypoxic conditions on melatonin and sleep. Forty healthy men were randomized into four groups: Normoxia (N) (n = 10); Hypoxia (H) (n = 10); Exercise under Normoxia (EN) (n = 10); and Exercise under Hypoxia (EH) (n = 10). The observation period for all groups was approximately 36 h, beginning with a first night devoid of any intervention. Aerobic exercise was performed by the EN and EH groups on a treadmill at 50% of the ventilatory threshold intensity for 60 min. Sleep evaluation was performed on the 1st and 2nd nights. Venous blood samples for the melatonin measurement were obtained on the 1st and 2nd days at 7:30 AM as well as on the 1st and 2nd nights at 10:30 PM. On the 2nd night, melatonin was higher in the H group than in the N group, but both were lower than values of the EH group. The nocturnal increase in melatonin was inversely correlated with the oxygen saturation of hemoglobin (SaO2%) on the 2nd night in the H group and on the 2nd day in the EH group. Diurnal remission of nocturnal melatonin appeared to be postponed in the H group and even more so in the EH group. Thus, normobaric hypoxia, which is equivalent to oxygen availability at an altitude of 4500 m, acutely increases melatonin. Moreover, diurnal remission of the nocturnal increase in melatonin seems to be delayed by hypoxia alone but even more so when acting together with exercise.


Assuntos
Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Melatonina/sangue , Sono/fisiologia , Adulto , Humanos , Masculino , Oxigênio/sangue , Fotoperíodo , Adulto Jovem
3.
Nutrients ; 9(7)2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28671626

RESUMO

This study analyzed the effects of carbohydrate and glutamine supplementation on salivary immunity after exercise at a simulated altitude of 4500 m. Fifteen volunteers performed exercise of 70% of VO2peak until exhaustion and were divided into three groups: hypoxia placebo, hypoxia 8% maltodextrin (200 mL/20 min), and hypoxia after six days glutamine (20 g/day) and 8% maltodextrin (200 mL/20 min). All procedures were randomized and double-blind. Saliva was collected at rest (basal), before exercise (pre-exercise), immediately after exercise (post-exercise), and two hours after exercise. Analysis of Variance (ANOVA) for repeated measures and Tukey post hoc test were performed. Statistical significance was set at p < 0.05. SaO2% reduced when comparing baseline vs. pre-exercise, post-exercise, and after recovery for all three groups. There was also a reduction of SaO2% in pre-exercise vs. post-exercise for the hypoxia group and an increase was observed in pre-exercise vs. recovery for both supplementation groups, and between post-exercise and for the three groups studied. There was an increase of salivary flow in post-exercise vs. recovery in Hypoxia + Carbohydrate group. Immunoglobulin A (IgA) decreased from baseline vs. post-exercise for Hypoxia + Glutamine group. Interleukin 10 (IL-10) increased from post-exercise vs. after recovery in Hypoxia + Carbohydrate group. Reduction of tumor necrosis factor alpha (TNF-α) was observed from baseline vs. post-exercise and after recovery for the Hypoxia + Carbohydrate group; a lower concentration was observed in pre-exercise vs. post-exercise and recovery. TNF-α had a reduction from baseline vs. post-exercise for both supplementation groups, and a lower secretion between baseline vs. recovery, and pre-exercise vs. post-exercise for Hypoxia + Carbohydrate group. Five hours of hypoxia and exercise did not change IgA. Carbohydrates, with greater efficiency than glutamine, induced anti-inflammatory responses.


Assuntos
Altitude , Carboidratos da Dieta/administração & dosagem , Exercício Físico/fisiologia , Glutamina/administração & dosagem , Mucosa Bucal/imunologia , Esforço Físico , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Masculino , Mucosa Bucal/efeitos dos fármacos , Saliva/imunologia , Adulto Jovem
4.
Nutrients ; 8(11)2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27827949

RESUMO

INTRODUCTION: Exercise performed at the hypoxia equivalent of an altitude of 4200 m is associated with elevated inflammatory mediators and changes in the Th1/Th2 response. By contrast, supplementation with carbohydrates has an anti-inflammatory effect when exercise is performed under normoxic conditions. The objective of this study was to evaluate the effect of carbohydrate supplementation on cytokines and cellular damage markers after exercise under hypoxic conditions at a simulated altitude of 4200 m. METHODS: Seven adult male volunteers who exercised for 60 min at an intensity of 50% VO2Peak were randomly evaluated under three distinct conditions; normoxia, hypoxia and hypoxia + carbohydrate supplementation. Blood samples were collected at rest, at the end of exercise and after 60 min of recovery. To evaluate hypoxia + carbohydrate supplementation, volunteers received a solution of 6% carbohydrate (maltodextrin) or a placebo (strawberry-flavored Crystal Light®; Kraft Foods, Northfield, IL, USA) every 20 min during exercise and recovery. Statistical analyses comprised analysis of variance, with a one-way ANOVA followed by the Tukey post hoc test with a significance level of p < 0.05. RESULTS: Under normoxic and hypoxic conditions, there was a significant increase in the concentration of IL-6 after exercise and after recovery compared to at rest (p < 0.05), while in the hypoxia + carbohydrate group, there was a significant increase in the concentration of IL-6 and TNF-α after exercise compared to at rest (p < 0.05). Furthermore, under this condition, TNF-α, IL-2 and the balance of IL-2/IL-4 were increased after recovery compared to at rest (p < 0.05). CONCLUSION: We conclude that carbohydrate supplementation modified the IL-6 and TNF-α serum concentrations and shifted the IL-2/IL-4 balance towards Th1 in response without glycemic, glutaminemia and cell damage effects.


Assuntos
Doença da Altitude/sangue , Citocinas/sangue , Carboidratos da Dieta/administração & dosagem , Exercício Físico/fisiologia , Inflamação/sangue , Adulto , Suplementos Nutricionais , Humanos , Interleucina-2/sangue , Interleucina-4/sangue , Interleucina-6/sangue , Masculino , Oxigênio/sangue , Consumo de Oxigênio , Placebos , Polissacarídeos/administração & dosagem , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA