Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Psychopharmacol ; 25(3): 329-44, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20156926

RESUMO

In the accompanying paper we describe how MRK-409 unexpectedly produced sedation in man at relatively low levels of GABA(A) receptor occupancy (∼10%). Since it was not clear whether this sedation was mediated via the α2/α3 or α1 GABA(A) subtype(s), we characterized the properties of TPA023B, a high-affinity imidazotriazine which, like MRK-409, has partial agonist efficacy at the α2 and α3 subtype but is an antagonist at the α1 subtype, at which MRK-409 has weak partial agonism. TPA023B gave dose- and time-dependent occupancy of rat brain GABA(A) receptors as measured using an in vivo [(3)H]flumazenil binding assay, with 50% occupancy corresponding to a respective dose and plasma drug concentration of 0.09 mg/kg and 19 ng/mL, the latter of which was similar to that observed in mice (25 ng/mL) and comparable to values obtained in baboon and man using [(11)C]flumazenil PET (10 and 5.8 ng/mL, respectively). TPA023B was anxiolytic in rodent and primate (squirrel monkey) models of anxiety (elevated plus maze, fear-potentiated startle, conditioned suppression of drinking, conditioned emotional response) yet had no significant effects in rodent or primate assays of ataxia and/or myorelaxation (rotarod, chain-pulling, lever pressing), up to doses (10 mg/kg) corresponding to occupancy of greater than 99%. In man, TPA023B was well tolerated at a dose (1.5 mg) that produced occupancy of >50%, suggesting that the sedation previously seen with MRK-409 is due to the partial agonist efficacy of that compound at the α1 subtype, and highlighting the importance of antagonist efficacy at this particular GABA(A) receptor population for avoiding sedation in man.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Agonistas de Receptores de GABA-A/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Adolescente , Adulto , Animais , Ansiolíticos/administração & dosagem , Ansiolíticos/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Agonistas de Receptores de GABA-A/administração & dosagem , Agonistas de Receptores de GABA-A/efeitos adversos , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/efeitos adversos , Humanos , Hidrocarbonetos Fluorados/administração & dosagem , Hidrocarbonetos Fluorados/efeitos adversos , Masculino , Camundongos , Pessoa de Meia-Idade , Subunidades Proteicas , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Saimiri , Especificidade da Espécie , Fatores de Tempo , Adulto Jovem
2.
Pharmacol Ther ; 120(1): 71-80, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18700152

RESUMO

The discovery of anandamide and 2-arachidonyl glycerol (2-AG) as naturally occurring mammalian endocannabinoids has had important and wide-reaching therapeutic implications. This, to a large extent, ensues from the complexity of endocannabinoid biology. One facet of endocannabinoid biology now receiving increased attention is the cyclo-oxygenase-2 (COX-2) derived oxidation products. Anandamide and 2-AG are oxidized to a range of PG-ethanolamides and PG-glyceryl esters that closely approaches that of the prostaglandins (PGs) formed from arachidonic acid. The pharmacology of these electrochemically neutral PG-ethanolamides (prostamides) and PG-glyceryl esters appears to be unique. No meaningful interaction with natural or recombinant prostanoid receptors is apparent. Nevertheless, in certain cells and tissues, prostamides and PG-glyceryl esters exert potent effects. The recent discovery of selective antagonists for the putative prostamide receptor has been a major advance in further establishing prostamide pharmacology as an entity distinct from prostanoid receptors. Since discovery of the prototype prostamide antagonist (AGN 204396), rapid progress has been made. The latest prostamide antagonists (AGN 211334-6) are 100 times more potent than the prototype and are, therefore, sufficiently active to be used in living animal studies. These compounds will allow a full evaluation of the role of prostamides in health and disease. To date, the only therapeutic application for prostamides is in glaucoma. The prostamide analog, bimatoprost, being the most effective ocular hypotensive drug currently available. Interestingly, PGE(2)-glyceryl ester and its chemically stable analog PGE(2)-serinolamide also lower intraocular pressure in dogs. Nevertheless, the therapeutic future of PGE(2)-glyceryl ester is more likely to reside in inflammation.


Assuntos
Moduladores de Receptores de Canabinoides/química , Moduladores de Receptores de Canabinoides/farmacologia , Ciclo-Oxigenase 2/metabolismo , Endocanabinoides , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Moduladores de Receptores de Canabinoides/biossíntese , Moduladores de Receptores de Canabinoides/uso terapêutico , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Humanos , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/uso terapêutico , Antagonistas de Prostaglandina/farmacologia , Antagonistas de Prostaglandina/uso terapêutico
3.
Nat Neurosci ; 3(6): 587-92, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10816315

RESUMO

Inhibitory neurotransmission in the brain is largely mediated by GABA(A) receptors. Potentiation of GABA receptor activation through an allosteric benzodiazepine (BZ) site produces the sedative, anxiolytic, muscle relaxant, anticonvulsant and cognition-impairing effects of clinically used BZs such as diazepam. We created genetically modified mice (alpha1 H101R) with a diazepam-insensitive alpha1 subtype and a selective BZ site ligand, L-838,417, to explore GABA(A) receptor subtypes mediating specific physiological effects. These two complimentary approaches revealed that the alpha1 subtype mediated the sedative, but not the anxiolytic effects of benzodiazepines. This finding suggests ways to improve anxiolytics and to develop drugs for other neurological disorders based on their specificity for GABA(A) receptor subtypes in distinct neuronal circuits.


Assuntos
Ansiolíticos/farmacologia , Benzodiazepinas/farmacologia , Hipnóticos e Sedativos/farmacologia , Receptores de GABA-A/metabolismo , Sítio Alostérico/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Azidas/farmacocinética , Benzodiazepinas/agonistas , Benzodiazepinas/antagonistas & inibidores , Benzodiazepinas/farmacocinética , Ligação Competitiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Diazepam/farmacologia , Relação Dose-Resposta a Droga , Flumazenil/farmacocinética , Fluorbenzenos/farmacologia , Antagonistas de Receptores de GABA-A , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Atividade Motora/efeitos dos fármacos , Técnicas de Patch-Clamp , Reflexo de Sobressalto/efeitos dos fármacos , Triazóis/farmacologia
4.
J Med Chem ; 42(14): 2706-15, 1999 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-10411491

RESUMO

After the requirement of pseudocycle formation in the ureas 3 and 7 for hD(4) binding and selectivity was confirmed, structural hybridization with the known hD(4) ligand 2 led to the design and identification of the lead 4-(2-oxo-1, 3-dihydroimidazol-2-yl)piperidine 8. Optimization studies were carried out on 8 with the aim of achieving 1000-fold selectivity for hD(4) over all other receptors while retaining the good pharmacokinetic properties of the lead. After initial preparation of 8 as a minor component in a low-yielding reaction, a novel and regioselective "four-step/one-pot" procedure was developed which proved to be applicable to rapid investigation of the SAR of the 1, 3-dihydroimidazol-2-one ring. Various changes to substituents attached to the 3-, 4-, or 5-position of the 1, 3-dihydroimidazol-2-one core of 8 did not significantly improve selectivity for hD(4) over hD(2) and hD(3). Greater selectivity (>1000-fold) was ultimately achieved by meta substitution of the benzyl group of 8 with various substituents. Compounds 28, 31, and 32 all possess the required selectivity for hD(4) over the other dopamine subtypes, but only 32 has >1000-fold selectivity over all the key counterscreens we tested against. Compound 32 is an antagonist at hD(4) and has a good pharmacokinetic profile in the rat, with excellent estimated in vivo receptor occupancy, thus making it a potentially useful pharmacological tool to investigate the role of the D(4) receptor.


Assuntos
Antagonistas de Dopamina/síntese química , Imidazóis/síntese química , Canais Iônicos/efeitos dos fármacos , Piperidinas/síntese química , Receptores de Dopamina D2/efeitos dos fármacos , Animais , Ligação Competitiva , Células CHO , Linhagem Celular , Cricetinae , Antagonistas de Dopamina/química , Antagonistas de Dopamina/farmacocinética , Antagonistas de Dopamina/farmacologia , Humanos , Imidazóis/química , Imidazóis/farmacocinética , Imidazóis/farmacologia , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/farmacologia , Ensaio Radioligante , Ratos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D4 , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 9(9): 1285-90, 1999 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-10340615

RESUMO

The syntheses of a number of different N-linked heterocyclic pyrazole replacements based on the structure 1 are described (compounds 3-12) as hD4 ligands. After further optimisation the best compound identified was 13 which has high affinity for hD4 (5.2 nM) and >300-fold selectivity for hD4 receptors over hD2 and hD3 receptors.


Assuntos
Piperidinas/síntese química , Receptores de Dopamina D2/metabolismo , Animais , Células CHO , Clozapina/análogos & derivados , Clozapina/síntese química , Clozapina/farmacologia , Cricetinae , Humanos , Cinética , Piperidinas/farmacologia , Receptores de Dopamina D4 , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/farmacologia
6.
J Med Chem ; 40(25): 4053-68, 1997 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-9406596

RESUMO

A major issue in designing drugs as antagonists at the glycine site of the NMDA receptor has been to achieve good in vivo activity. A series of 4-hydroxyquinolone glycine antagonists was found to be active in the DBA/2 mouse anticonvulsant assay, but improvements in in vitro affinity were not mirrored by corresponding increases in anticonvulsant activity. Here we show that binding of the compounds to plasma protein limits their brain penetration. Relative binding to the major plasma protein, albumin, was measured in two different ways: by a radioligand binding experiment or using an HPLC assay, for a wide structural range of glycine/NMDA site ligands. These measures of plasma protein binding correlate well (r = 0.84), and the HPLC assay has been used extensively to quantify plasma protein binding. For the 4-hydroxyquinolone series, binding to plasma protein correlates (r = 0.92) with log P (octanol/pH 7.4 buffer) over a range of log P values from 0 to 5. The anticonvulsant activity increases with in vitro affinity, but the slope of a plot of pED50 versus pIC50 is low (0.40); taking plasma protein binding into account in this plot increases the slope to 0.60. This shows that binding to albumin in plasma reduces the amount of compound free to diffuse across the blood-brain barrier. Further evidence comes from three other experiments: (a) Direct measurements of brain/blood ratios for three compounds (2, 16, 26) show the ratio decreases with increasing log R. (b) Warfarin, which competes for albumin binding sites dose-dependently, decreased the ED50 of 26 for protection against seizures induced by NMDLA. (c) Direct measurements of brain penetration using an in situ brain perfusion model in rat to measure the amount of drug crossing the blood-brain barrier showed that compounds 2, 26, and 32 penetrate the brain well in the absence of plasma protein, but this is greatly reduced when the drug is delivered in plasma. In the 4-hydroxyquinolones glycine site binding affinity increases with lipophilicity of the 3-substituent up to a maximum at a log P around 3, then does not improve further. When combined with increasing protein binding, this gives a parabolic relationship between predicted in vivo activity and log P, with a maximum log P value of 2.39. Finally, the plasma protein binding studies have been extended to other series of glycine site antagonists, and its is shown that for a given log P these have similar protein binding to the 4-hydroxyquinolones, except for compounds that are not acidic. The results have implications for the design of novel glycine site antagonists, and it is suggested that it is necessary to either keep log P low or pKa high to obtain good central nervous system activity.


Assuntos
Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacocinética , Receptores de Glicina/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Barreira Hematoencefálica , Antagonistas de Aminoácidos Excitatórios/síntese química , Masculino , Camundongos , Ligação Proteica , Ratos
7.
J Med Chem ; 40(5): 754-65, 1997 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-9057862

RESUMO

4-Substituted-3-phenylquinolin-2(1H)-ones have been synthesized and evaluated in vitro for antagonist activity at the glycine site on the NMDA (N-methyl-D-aspartate) receptor and in vivo for anticonvulsant activity in the DBA/2 strain of mouse in an audiogenic seizure model. 4-Amino-3-phenylquinolin-2(1H)-one (3) is 40-fold lower in binding affinity but only 4-fold weaker as an anticonvulsant than the acidic 4-hydroxy compound 1. Methylsulfonylation at the 4-position of 3 gives an acidic compound (6, pKa = 6.0) where affinity is fully restored but in vivo potency is significantly reduced (Table 1). Methylation at the 4-position of 1 to give 18 results in the abolition of measurable affinity, but the attachment of neutral hydrogen bond-accepting groups to the methyl group of 18 produces compounds with comparable in vitro and in vivo activity to 1 (e.g., 23 and 28, Table 2). Replacement of the 4-hydroxy group of 1 with an ethyl group abolishes activity (42), but again, incorporation of neutral hydrogen bond acceptors to the terminal carbon atom restores affinity (e.g., 36, 39, and 40, Table 3). Replacement of the 4-hydroxy group of the high-affinity compound 2 with an amino group produces a compound with 200-fold reduced affinity (43; IC50 = 0.42 microM, Table 4) which is nevertheless still 10-fold higher in affinity than 3. The results in this paper indicate that anionic functionality is not an absolute requirement for good affinity at the glycine/NMDA site and provide compelling evidence for the existence of a ligand/receptor hydrogen bond interaction between an acceptor attached to the 4-position of the ligand and a hydrogen bond donor attached to the receptor.


Assuntos
Anticonvulsivantes/síntese química , Antagonistas de Aminoácidos Excitatórios/síntese química , Glicina/metabolismo , Quinolonas/síntese química , Quinolonas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Aminoquinolinas/metabolismo , Animais , Anticonvulsivantes/química , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacologia , Sítios de Ligação , Ligação Competitiva , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos DBA , Estrutura Molecular , N-Metilaspartato/farmacologia , Quinolonas/química , Quinolonas/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
8.
J Med Chem ; 36(22): 3397-408, 1993 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-8230130

RESUMO

3,4-Dihydro-2(1H)-quinolones, evolved from 2-carboxy-1,2,3,4,- tetrahydroquinolines and 3-carboxy-4-hydroxy-2(1H)-quinolones, have been synthesized and evaluated in vitro for antagonist activity at the glycine site on the NMDA receptor and for AMPA [(RS)-alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid] antagonist activity. Generally poor potency at the glycine site is observed when a variety of electron-withdrawing substituents are attached to the 3-position of 3,4-dihydro-2(1H)-quinolones. The analogues 5-9 (IC50 values > 100 microM, Table I) exist largely in the 3,4-dipseudoaxial conformation (as evidenced by 1H NMR spectra), whereas the 3-cyano derivative (10, IC50 = 12.0 microM) has a relatively high population of the 3-pseudoequatorial conformer. The 3-nitro analogue (4, IC50 = 1.32 microM) has a pKa approximately 5 and thus exists at physiological pH as an anion with the nitro group planar to the quinolone ring. The general requirement of acidity for high affinity binding at the glycine/NMDA site is supported with the good activity of the other 3-nitro derivatives (13-21), all of which are deprotonated at physiological pH. The 3-nitro-3,4-dihydro-2(1H)-quinolones and 2-carboxy-1,2,3,4-tetrahydroquinolines show quite different structure-activity relationships at the 4-position. The unselective excitatory amino acid activity of 21 is comparable with 6,7-dichloro-quinoxaline-2,3-dione and 6,7-dichloroquinoxalic acid and this suggests similarities in their modes of binding to excitatory amino acid receptors. The broad spectrum excitatory amino acid antagonist activity of the 4-unsubstituted analogue 21 (KbNMDA = 6.7 microM, KbAMPA = 9.2 microM) and the glycine/NMDA selectivity of the other 3-nitro derivatives allows the proposal of a model for AMPA receptor binding which differs from the glycine binding pharmacophore in that there is bulk intolerance adjacent to the 4-position. Compound 21 (L-698,544) is active (ED50 = 13.2 mg/kg) in the DBA/2 mouse anticonvulsant model and is the most potent combined glycine/NMDA-AMPA antagonist yet reported, in vivo, and may prove to be a useful pharmacological tool.


Assuntos
Aminoácidos/antagonistas & inibidores , Glicina/metabolismo , Nitrocompostos/síntese química , Nitrocompostos/farmacologia , Quinolonas/síntese química , Quinolonas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Sítios de Ligação , Fenômenos Químicos , Físico-Química , Nitrocompostos/metabolismo , Quinolonas/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
9.
J Med Chem ; 35(11): 1942-53, 1992 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-1534583

RESUMO

2-Carboxy-1,2,3,4-tetrahydroquinoline derivatives, derived from kynurenic acid, have been synthesized and evaluated for in vitro antagonist activity at the glycine site on the NMDA receptor. 2,3-Dihydrokynurenic acids show reduced potency relative to the parent lead compounds (Table I) possibly as a result of conformational effects. Removal of the 4-oxo group results in further reduced potency, but introduction of a cis-carboxymethyl group to the 4-position restores antagonist activity (Tables III and IV). Replacement of the keto group of 5,7-dichloro-2,3-dihydrokynurenic acid with other alternative H-bonding groups, for example cis- and trans-benzyloxycarbonyl and cis- and trans-carboxamido (Table V), gives comparable activity, but there is negligible stereoselectivity. A significant increase in potency and stereoselectivity is seen within the 4-acetate series (Table VI). The trans-4-acetic acid is significantly more potent than the corresponding lead kynurenic acid and has 100-fold greater affinity than the cis isomer. The results are consistent with a requirement in binding for a pseudoequatorially placed 2-carboxylate and clearly demonstrate the importance for binding of a correctly positioned hydrogen-bond-accepting group at the 4-position. The high-affinity binding of an anionic group in the 4-substituent binding pocket suggests that the glycine site and the neurotransmitter recognition (NMDA) site may have some features in common.


Assuntos
Glicina/metabolismo , Ácido Cinurênico/química , Quinolinas/química , Quinolinas/síntese química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Quinolinas/metabolismo , Quinolinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade , Difração de Raios X
10.
J Med Chem ; 35(11): 1954-68, 1992 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-1534584

RESUMO

trans-2-Carboxy-5,7-dichloro-4-amidotetrahydroquinolines, evolved from the lead 5,7-dichlorokynurenic acid, have been synthesized and tested for in vitro antagonist activity at the glycine site on the N-methyl-D-aspartate (NMDA) receptor. Optimization of the 4-substituent has provided antagonists having nanomolar affinity, including the urea trans-2-carboxy-5,7-dichloro-4[[(phenylamino)carbonyl]amino]-1,2,3, 4-tetrahydroquinoline (35; IC50 = 7.4 nM vs [3H]glycine binding; Kb = 130 nM for block of NMDA responses in the rat cortical slice), which is one of the most potent NMDA antagonists yet found. The absolute stereochemical requirements for binding were found to be 2S,4R, showing that, in common with other glycine-site NMDA receptor ligands, the unnatural configuration at the alpha-amino acid center is required. The preferred conformation of the trans-2,4-disubstituted tetrahydroquinoline system, as shown by X-ray crystallography and 1H NMR studies, places the 2-carboxyl pseudoequatorial and the 4-substituent pseudoaxial. Modifications of the 4-amide show that bulky substituents are tolerated and reveal the critical importance for activity of correct positioning of the carbonyl group. The high affinity of trans-2-carboxy-5,7-dichloro-4-[1-(3-phenyl-2-oxoimidazolidinyl)]- 1,2,3,4-tetrahydroquinoline (55; IC50 = 6 nM) suggests that the Z,Z conformer of the phenyl urea moiety in 35 is recognized by the receptor. Molecular modeling studies show that the 4-carbonyl groups of the kynurenic acids, the tetrahydroquinolines, and related antagonists based on N-(chlorophenyl)glycine, can interact with a single putative H-bond donor on the receptor. The results allow the establishment of a three-dimensional pharmacophore of the glycine receptor antagonist site, incorporating a newly defined bulk tolerance/hydrophobic region.


Assuntos
Aminoquinolinas/síntese química , Glicina/metabolismo , Ácido Cinurênico/química , Quinolinas/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , N-Metilaspartato/farmacologia , Quinolinas/metabolismo , Quinolinas/farmacologia , Ratos , Relação Estrutura-Atividade
11.
Mol Pharmacol ; 41(5): 914-22, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-1375317

RESUMO

The glycine site on the N-methyl-D-aspartate (NMDA) subtype of receptors for the excitatory neurotransmitter glutamate is a potential target for the development of neuroprotective drugs. We report here two chemical series of glycine site antagonists derived from kynurenic acid (KYNA), with greatly improved potency and selectivity. Disubstitution with chlorine or bromine in the 5- and 7-positions of KYNA increased affinity for [3H]glycine binding sites in rat cortex/hippocampus P2 membranes, with a parallel increase of potency for antagonism of NMDA-evoked responses in the rat cortical wedge preparation. The optimal compound was 5-I,7-Cl-KYNA, with an IC50 for [3H]glycine binding of 29 nM and an apparent Kb in the cortical wedge preparation of 0.41 microM. Reduction of the right-hand ring of 5,7-diCl-KYNA reduced affinity by 10-fold, but this was restored by substitution in the 4-position with the trans-phenylamide and further improved in the trans-benzylamide. The optimal compound was the transphenylurea (L-689,560), with an IC50 of 7.4 nM and an apparent Kb of 0.13 microM. Both series of compounds displayed a high degree of selectivity for the glycine site, having IC50 values of greater than 10 microM versus radioligand binding to the glutamate recognition sites of NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and kainate receptors and the strychnine-sensitive glycine receptor. Selectivity versus AMPA receptor-mediated responses was also apparent in the rat cortical wedge and in patch-clamp recordings of cortical neurons in culture. Experiments using [3H]dizocilpine (MK-801) binding indicated that 5,7-diBr-KYNA, 5,7-diCl-KYNA, 5-I,7-Cl-KYNA, and L-689,560 all behaved as full antagonists and were competitive with glycine. Patch-clamp recordings of cortical neurons in culture also indicated that NMDA-induced currents were antagonized by competition for the glycine site, and gave no evidence for partial agonist activity. pKi values for 5,7-diBr-KYNA and L-689,560 in these experiments were 7.2 and 7.98, respectively, similar to the affinities of these compounds in the glycine binding assay. The high affinity and selectivity of these new derivatives make them useful tools to investigate the function of the glycine site on the NMDA receptor.


Assuntos
Encéfalo/metabolismo , Córtex Cerebral/fisiologia , Glicina/metabolismo , Ácido Cinurênico/análogos & derivados , Ácido Cinurênico/farmacologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Maleato de Dizocilpina/metabolismo , Potenciais Evocados/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Ibotênico/análogos & derivados , Ácido Ibotênico/metabolismo , Ácido Caínico/metabolismo , Cinética , Masculino , Neurônios/efeitos dos fármacos , Ensaio Radioligante , Ratos , Ratos Endogâmicos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Relação Estrutura-Atividade , Trítio , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
12.
Mol Pharmacol ; 41(5): 923-30, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-1375318

RESUMO

The binding characteristics of [3H]L-689,560 [(+/-)-4-(trans)-2-carboxy-5,7-dichloro-4-phenylaminocarbonylamino -1,2,3,4- tetrahydroquinoline], a selective antagonist for the glycine site on the N-methyl-D-aspartate receptor, have been evaluated using rat cortex/hippocampus P2 membranes. Specific [3H]L-689,560 binding was saturable, having a Kd of 2.97 nM and a Bmax of 4.15 pmol/mg of protein. The Bmax value was not significantly different from that obtained for [3H]glycine in the same membrane preparation, and L-689,560 and glycine were found to be mutually competitive. The specific binding of [3H]L-689,560 (1 nM) represented 96 +/- 0.02% (four experiments) of total binding. Association experiments at 4 degrees revealed that [3H]L-689,560 reached equilibrium in 120 min, with a t1/2 of 40 min. The dissociation of [3H]L-689,560 was slow at 4 degrees (t1/2 = 118 min), allowing the use of filtration to separate free from bound radioactivity. Both association and dissociation curves were best fitted by a double-exponential function, suggesting the presence of two components. Comparison of IC50 values obtained using [3H]glycine and [3H]L-689,560 binding for 21 glycine site ligands (including agonists, partial agonists, and antagonists, with affinities spanning 5 orders of magnitude) showed a 1:1 correlation, with a correlation coefficient of 0.97. This suggests that efficacy does not have a large influence on the affinity of glycine site ligands when an agonist or antagonist radioligand is used. Ligands for other amino acid recognition sites did not directly inhibit [3H]L-689,560 binding. [3H]L-689,560 is an improved radioligand for the glycine site that will facilitate further investigations of its properties.


Assuntos
Aminoquinolinas/metabolismo , Encéfalo/metabolismo , Glicina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Sítios de Ligação , Cátions Bivalentes , Membrana Celular/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/fisiologia , Cinética , Masculino , Quinolinas , Ratos , Ratos Endogâmicos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Trítio
13.
J Med Chem ; 34(4): 1243-52, 1991 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-1826744

RESUMO

Derivatives of the nonselective excitatory amino acid antagonist kynurenic acid (4-oxo-1,4-dihydroquinoline-2-carboxylic acid, 1) have been synthesized and evaluated for in vitro antagonist activity at the excitatory amino acid receptors sensitive to N-methyl-D-aspartic acid (NMDA), quisqualic acid (QUIS or AMPA), and kainic acid (KA). Introduction of substituents at the 5-, 7-, and 5,7-positions resulted in analogues having selective NMDA antagonist action, as a result of blockade of the glycine modulatory (or coagonist) site on the NMDA receptor. Regression analysis suggested a requirement for optimally sized, hydrophobic 5- and 7-substituents, with bulk tolerance being greater at the 5-position. Optimization led to the 5-iodo-7-chloro derivative (53), which is the most potent and selective glycine/NMDA antagonist to date (IC50 vs [3H]glycine binding, 32 nM; IC50's for other excitatory amino acid receptor sites, greater than 100 microM). Substitution of 1 at the 6-position resulted in compounds having selective non-NMDA antagonism and 8-substituted compounds were inactive at all receptors. The retention of glycine/NMDA antagonist activity in heterocyclic ring modified analogues, such as the oxanilide 69 and the 2-carboxybenzimidazole 70, suggests that the 4-oxo tautomer of 1 and its derivatives is required for activity. Structurally related quinoxaline-2,3-diones are also glycine/NMDA antagonists, but are not selective and are less potent than the 1 derivatives, and additionally show different structure-activity requirements for aromatic ring substitution. On the basis of these results, a model accounting for glycine receptor binding of the 1 derived antagonists is proposed, comprising (a) size-limited, hydrophobic binding of the benzene ring, (b) hydrogen-bond acceptance by the 4-oxo group, (c) hydrogen-bond donation by the 1-amino group, and (d) a Coulombic attraction of the 2-carboxylate. The model can also account for the binding of quinoxaline-2,3-diones, quinoxalic acids, and 2-carboxybenzimidazoles.


Assuntos
Glicina/metabolismo , Ácido Cinurênico/análogos & derivados , Ácido Cinurênico/síntese química , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Ligação Competitiva , Indicadores e Reagentes , Ácido Cinurênico/farmacologia , Estrutura Molecular , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
14.
J Med Chem ; 33(5): 1296-305, 1990 May.
Artigo em Inglês | MEDLINE | ID: mdl-1691788

RESUMO

Displacement of [3H]MK-801 (dizocilpine, 1) binding to rat brain membranes has been used to evaluate the affinities of novel dibenzocycloalkenimines related to 1 for the ion channel binding site (also known as the phencyclidine or PCP receptor) on the N-methyl-D-aspartate (NMDA) subtype of excitory amino acid receptor. In common with many other agents having actions in the central nervous system, these compounds contain a hydrophobic aromatic moiety and a basic nitrogen atom. The conformational rigidity of these ligands provides a unique opportunity to evaluate the importance of specific geometrical properties that influence active-site recognition, in particular the role of the nitrogen atom in hydrogen-bonding interactions. The relative affinities (IC50s) of hydrocarbon-substituted analogues of 1 and ring homologated cyclooctenimines illustrate the importance of size-limited hydrophobic binding of both aryl rings and of the quaternary C-5 methyl group. Analysis of the binding of a series of the 10 available structurally rigid dibenzoazabicyclo[x.y.z]alkanes, by using molecular modeling techniques, uncovered a highly significant correlation between affinity and a proposed ligand-active site hydrogen bonding vector (r = 0.950, p less than 0.001). These results are used to generate a pharmacophore of the MK-801 recognition site/PCP receptor, which accounts for the binding of all of the known ligands.


Assuntos
Anticonvulsivantes/farmacologia , Receptores de Neurotransmissores/efeitos dos fármacos , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/metabolismo , Sítios de Ligação , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Dibenzocicloeptenos/metabolismo , Maleato de Dizocilpina , Ligação de Hidrogênio , Canais Iônicos/efeitos dos fármacos , Ligantes , Modelos Moleculares , Ratos , Receptores de N-Metil-D-Aspartato , Receptores de Neurotransmissores/metabolismo , Relação Estrutura-Atividade , Trítio
16.
J Med Chem ; 25(2): 116-20, 1982 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-6276546

RESUMO

Appropriate modification of 14 beta-methoxy- and 14 beta-ethoxycodeinone (prepared by alkylation of 14 beta-hydroxycodeinone) has generated four alkoxy analogues (3a-d) of naloxone and naltrexone. These agents were pure narcotic antagonists in contradiction to the predictions of the common anionic receptor site hypothesis, postulated to be of importance in the enhanced antagonism of naloxone. The molecular change from allyl to cyclopropylmethyl on the N atom increased selectivity of these antagonists for the mu receptor to the same extent as found for naloxone. Increase in the length of the C14 O-substituent had no effect on receptor selectivity, and either formation in most cases did not significantly alter oral/parenteral ratios of durations of action.


Assuntos
Naloxona/farmacologia , Receptores Opioides/efeitos dos fármacos , Animais , Ânions , Fenômenos Químicos , Química , Cobaias , Técnicas In Vitro , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Naltrexona/farmacologia , Entorpecentes/metabolismo , Ratos
17.
Rev Sci Instrum ; 49(10): 1489, 1978 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18698983

RESUMO

Modification of a commercially available oxygen bomb calorimeter is described. This modification permits direct determination of the enthalpies of reaction of liquid metals that have melting points below about 310 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA