Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sci Transl Med ; 16(730): eadf9735, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38232138

RESUMO

Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.


Assuntos
Demência Frontotemporal , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo de Nucleotídeo Único/genética
2.
Front Cell Dev Biol ; 10: 863089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386195

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited cerebellar ataxia caused by the expansion of a polyglutamine (polyQ) repeat in the gene encoding ATXN3. The polyQ expansion induces protein inclusion formation in the neurons of patients and results in neuronal degeneration in the cerebellum and other brain regions. We used adeno-associated virus (AAV) technology to develop a new mouse model of SCA3 that recapitulates several features of the human disease, including locomotor defects, cerebellar-specific neuronal loss, polyQ-expanded ATXN3 inclusions, and TDP-43 pathology. We also found that neurofilament light is elevated in the cerebrospinal fluid (CSF) of the SCA3 animals, and the expanded polyQ-ATXN3 protein can be detected in the plasma. Interestingly, the levels of polyQ-ATXN3 in plasma correlated with measures of cerebellar degeneration and locomotor deficits in 6-month-old SCA3 mice, supporting the hypothesis that this factor could act as a biomarker for SCA3.

3.
Cell ; 185(8): 1346-1355.e15, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35247328

RESUMO

Misfolding and aggregation of disease-specific proteins, resulting in the formation of filamentous cellular inclusions, is a hallmark of neurodegenerative disease with characteristic filament structures, or conformers, defining each proteinopathy. Here we show that a previously unsolved amyloid fibril composed of a 135 amino acid C-terminal fragment of TMEM106B is a common finding in distinct human neurodegenerative diseases, including cases characterized by abnormal aggregation of TDP-43, tau, or α-synuclein protein. A combination of cryoelectron microscopy and mass spectrometry was used to solve the structures of TMEM106B fibrils at a resolution of 2.7 Å from postmortem human brain tissue afflicted with frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP, n = 8), progressive supranuclear palsy (PSP, n = 2), or dementia with Lewy bodies (DLB, n = 1). The commonality of abundant amyloid fibrils composed of TMEM106B, a lysosomal/endosomal protein, to a broad range of debilitating human disorders indicates a shared fibrillization pathway that may initiate or accelerate neurodegeneration.


Assuntos
Demência Frontotemporal , Proteínas de Membrana , Proteínas do Tecido Nervoso , Doenças Neurodegenerativas , Amiloide , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/patologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
5.
Parkinsonism Relat Disord ; 89: 151-154, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303201

RESUMO

INTRODUCTION: Accumulation of polyglutamine (polyQ) ataxin-3 (ATXN3) contributes to the pathobiology of spinocerebellar ataxia type 3 (SCA3). Recently, we showed that polyQ ATXN3 is elevated in the plasma and cerebrospinal fluid (CSF) of SCA3 patients, and has the potential to serve as a biological marker for this disease [1]. Based on these findings, we investigated whether polyQ ATXN3 can also be detected in urine samples from SCA3 patients. METHODS: We analyzed urine samples from 30 SCA3 subjects (including one pre-symptomatic subject), 35 subjects with other forms of ataxia, and 37 healthy controls. To quantify polyQ ATXN3 protein levels, we used our previously developed immunoassay. RESULTS: PolyQ ATXN3 can be detected in the urine of SCA3 patients, but not in urine samples from healthy controls or other forms of ataxia. There was a significant statistical association between polyQ ATXN3 levels in urine samples and those in plasma. Further, the levels of polyQ ATXN3 urine associated with an earlier age of SCA3 disease onset. CONCLUSION: As clinical trials for SCA3 advance, urine polyQ ATXN3 protein has potential to be a useful, non-invasive and inexpensive biomarker for SCA3.


Assuntos
Ataxina-3/urina , Doença de Machado-Joseph/urina , Peptídeos/urina , Proteínas Repressoras/urina , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino
6.
Cell Rep ; 34(11): 108843, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730588

RESUMO

Tau accumulation is a major pathological hallmark of Alzheimer's disease (AD) and other tauopathies, but the mechanism(s) of tau aggregation remains unclear. Taking advantage of the identification of tau filament cores by cryoelectron microscopy, we demonstrate that the AD tau core possesses the intrinsic ability to spontaneously aggregate in the absence of an inducer, with antibodies generated against AD tau core filaments detecting AD tau pathology. The AD tau core also drives aggregation of full-length wild-type tau, increases seeding potential, and templates abnormal forms of tau present in brain homogenates and antemortem cerebrospinal fluid (CSF) from patients with AD in an ultrasensitive real-time quaking-induced conversion (QuIC) assay. Finally, we show that the filament cores in corticobasal degeneration (CBD) and Pick's disease (PiD) similarly assemble into filaments under physiological conditions. These results document an approach to modeling tau aggregation and have significant implications for in vivo investigation of tau transmission and biomarker development.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Anticorpos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Degeneração Corticobasal/patologia , Humanos , Doença de Pick/patologia , Agregados Proteicos , Fatores de Tempo , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619090

RESUMO

Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas , Multimerização Proteica , Antígeno-1 Intracelular de Células T/metabolismo , Proteínas tau/metabolismo , Amiloide/química , Amiloide/metabolismo , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas Recombinantes , Proteínas tau/química
8.
Front Cell Dev Biol ; 9: 809942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096836

RESUMO

The aberrant translation of a repeat expansion in chromosome 9 open reading frame 72 (C9orf72), the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), results in the accumulation of toxic dipeptide repeat (DPR) proteins in the central nervous system We have found that, among the sense DPR proteins, HDAC6 specifically interacts with the poly (GA) and co-localizes with inclusions in both patient tissue and a mouse model of this disease (c9FTD/ALS). Overexpression of HDAC6 increased poly (GA) levels in cultured cells independently of HDAC6 deacetylase activity, suggesting that HDAC6 can modulate poly (GA) pathology through a mechanism that depends upon their physical interaction. Moreover, decreasing HDAC6 expression by stereotaxic injection of antisense oligonucleotides significantly reduced the number of poly (GA) inclusions in c9FTD/ALS mice. These findings suggest that pharmacologically reducing HDAC6 levels could be of therapeutic value in c9FTD/ALS.

9.
Acta Neuropathol Commun ; 8(1): 210, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261653

RESUMO

The molecular chaperone Clusterin (CLU) impacts the amyloid pathway in Alzheimer's disease (AD) but its role in tau pathology is unknown. We observed CLU co-localization with tau aggregates in AD and primary tauopathies and CLU levels were upregulated in response to tau accumulation. To further elucidate the effect of CLU on tau pathology, we utilized a gene delivery approach in CLU knock-out (CLU KO) mice to drive expression of tau bearing the P301L mutation. We found that loss of CLU was associated with exacerbated tau pathology and anxiety-like behaviors in our mouse model of tauopathy. Additionally, we found that CLU dramatically inhibited tau fibrilization using an in vitro assay. Together, these results demonstrate that CLU plays a major role in both amyloid and tau pathologies in AD.


Assuntos
Clusterina/genética , Clusterina/metabolismo , Agregação Patológica de Proteínas/genética , Tauopatias/genética , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Ansiedade/fisiopatologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Doença de Pick/genética , Doença de Pick/metabolismo , Doença de Pick/patologia , Doença de Pick/fisiopatologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/fisiopatologia , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/fisiopatologia
10.
Sci Transl Med ; 12(566)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087504

RESUMO

Spinocerebellar ataxia type 3 (SCA3), caused by a CAG repeat expansion in the ataxin-3 gene (ATXN3), is characterized by neuronal polyglutamine (polyQ) ATXN3 protein aggregates. Although there is no cure for SCA3, gene-silencing approaches to reduce toxic polyQ ATXN3 showed promise in preclinical models. However, a major limitation in translating putative treatments for this rare disease to the clinic is the lack of pharmacodynamic markers for use in clinical trials. Here, we developed an immunoassay that readily detects polyQ ATXN3 proteins in human biological fluids and discriminates patients with SCA3 from healthy controls and individuals with other ataxias. We show that polyQ ATXN3 serves as a marker of target engagement in human fibroblasts, which may bode well for its use in clinical trials. Last, we identified a single-nucleotide polymorphism that strongly associates with the expanded allele, thus providing an exciting drug target to abrogate detrimental events initiated by mutant ATXN3. Gene-silencing strategies for several repeat diseases are well under way, and our results are expected to improve clinical trial preparedness for SCA3 therapies.


Assuntos
Doença de Machado-Joseph , Alelos , Ataxina-3/genética , Humanos , Doença de Machado-Joseph/genética , Neurônios , Proteínas Repressoras/genética
11.
J Clin Invest ; 130(11): 6080-6092, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32790644

RESUMO

No treatment for frontotemporal dementia (FTD), the second most common type of early-onset dementia, is available, but therapeutics are being investigated to target the 2 main proteins associated with FTD pathological subtypes: TDP-43 (FTLD-TDP) and tau (FTLD-tau). Testing potential therapies in clinical trials is hampered by our inability to distinguish between patients with FTLD-TDP and FTLD-tau. Therefore, we evaluated truncated stathmin-2 (STMN2) as a proxy of TDP-43 pathology, given the reports that TDP-43 dysfunction causes truncated STMN2 accumulation. Truncated STMN2 accumulated in human induced pluripotent stem cell-derived neurons depleted of TDP-43, but not in those with pathogenic TARDBP mutations in the absence of TDP-43 aggregation or loss of nuclear protein. In RNA-Seq analyses of human brain samples from the NYGC ALS cohort, truncated STMN2 RNA was confined to tissues and disease subtypes marked by TDP-43 inclusions. Last, we validated that truncated STMN2 RNA was elevated in the frontal cortex of a cohort of patients with FTLD-TDP but not in controls or patients with progressive supranuclear palsy, a type of FTLD-tau. Further, in patients with FTLD-TDP, we observed significant associations of truncated STMN2 RNA with phosphorylated TDP-43 levels and an earlier age of disease onset. Overall, our data uncovered truncated STMN2 as a marker for TDP-43 dysfunction in FTD.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Lobo Frontal/metabolismo , Demência Frontotemporal/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Estatmina/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Lobo Frontal/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Estatmina/genética
12.
Cell ; 180(4): 633-644.e12, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32032505

RESUMO

Tau aggregation into insoluble filaments is the defining pathological hallmark of tauopathies. However, it is not known what controls the formation and templated seeding of strain-specific structures associated with individual tauopathies. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of tau filaments from corticobasal degeneration (CBD) human brain tissue. Cryo-EM and mass spectrometry of tau filaments from CBD reveal that this conformer is heavily decorated with posttranslational modifications (PTMs), enabling us to map PTMs directly onto the structures. By comparing the structures and PTMs of tau filaments from CBD and Alzheimer's disease, it is found that ubiquitination of tau can mediate inter-protofilament interfaces. We propose a structure-based model in which cross-talk between PTMs influences tau filament structure, contributing to the structural diversity of tauopathy strains. Our approach establishes a framework for further elucidating the relationship between the structures of polymorphic fibrils, including their PTMs, and neurodegenerative disease.


Assuntos
Processamento de Proteína Pós-Traducional , Tauopatias/metabolismo , Proteínas tau/química , Idoso , Microscopia Crioeletrônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Tauopatias/patologia , Proteínas tau/metabolismo
13.
Acta Neuropathol Commun ; 7(1): 36, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845985

RESUMO

Tauopathies are neurodegenerative disorders characterized by aggregation of microtubule associated tau protein in neurons and glia. They are clinically and pathologically heterogeneous depending on the isoform of tau protein that accumulates (three or four 31-to-32-amino-acid repeats [3R or 4R] in the microtubule binding domain), as well as the cellular and neuroanatomical distribution of tau pathology. Growing evidence suggests that distinct tau conformers may contribute to the characteristic features of various tauopathies. Globular glial tauopathy (GGT) is a rare 4R tauopathy with globular cytoplasmic inclusions within neurons and glial cells. Given the unique cellular distribution and morphology of tau pathology in GGT, we sought to determine if tau species in GGT had distinctive biological properties. To address this question, we performed seeding analyses with postmortem brain tissues using a commercial tau biosensor cell line. We found that brain lysates from GGT cases had significantly higher seeding competency than other tauopathies, including corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and Alzheimer's disease (AD). The robust seeding activity of GGT brain lysates was independent of phosphorylated tau burden and diminished upon removal of tau from samples, suggesting that seeding properties were indeed mediated by tau in the lysates. In addition, cellular inclusions in the tau biosensor cell line induced by GGT had a distinct, globular morphology that was markedly different from inclusions induced by other tauopathies, further highlighting the unique nature of tau species in GGT. Characterization of different tau species in GGT showed that detergent-insoluble, fibril-like tau contained the highest seeding activity, as reflected in its ability to increase tau aggregation in primary glial cultures. Taken together, our data suggest that unique seeding properties differentiate GGT-tau from other tauopathies, which provides new insight into pathogenic heterogeneity of primary neurodegenerative tauopathies.


Assuntos
Encéfalo/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Química Encefálica/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neuroglia/química , Neuroglia/patologia , Neurônios/química , Neurônios/patologia , Tauopatias/patologia , Proteínas tau/análise
14.
Science ; 363(6428)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30765536

RESUMO

How hexanucleotide GGGGCC (G4C2) repeat expansions in C9orf72 cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is not understood. We developed a mouse model engineered to express poly(PR), a proline-arginine (PR) dipeptide repeat protein synthesized from expanded G4C2 repeats. The expression of green fluorescent protein-conjugated (PR)50 (a 50-repeat PR protein) throughout the mouse brain yielded progressive brain atrophy, neuron loss, loss of poly(PR)-positive cells, and gliosis, culminating in motor and memory impairments. We found that poly(PR) bound DNA, localized to heterochromatin, and caused heterochromatin protein 1α (HP1α) liquid-phase disruptions, decreases in HP1α expression, abnormal histone methylation, and nuclear lamina invaginations. These aberrations of histone methylation, lamins, and HP1α, which regulate heterochromatin structure and gene expression, were accompanied by repetitive element expression and double-stranded RNA accumulation. Thus, we uncovered mechanisms by which poly(PR) may contribute to the pathogenesis of C9orf72-associated FTD and ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/metabolismo , Dipeptídeos/metabolismo , Heterocromatina/patologia , RNA de Cadeia Dupla/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Proteína C9orf72/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Dipeptídeos/genética , Modelos Animais de Doenças , Proteínas de Fluorescência Verde , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Lâmina Nuclear/patologia , Sequências Repetitivas de Ácido Nucleico
15.
Acta Neuropathol Commun ; 7(1): 10, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674342

RESUMO

Pathogenic mutations in the tau gene (microtubule associated protein tau, MAPT) are linked to the onset of tauopathy, but the A152T variant is unique in acting as a risk factor for a range of disorders including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and dementia with Lewy bodies (DLB). In order to provide insight into the mechanism by which A152T modulates disease risk, we developed a novel mouse model utilizing somatic brain transgenesis with adeno-associated virus (AAV) to drive tau expression in vivo, and validated the model by confirming the distinct biochemical features of A152T tau in postmortem brain tissue from human carriers. Specifically, TauA152T-AAV mice exhibited increased tau phosphorylation that unlike animals expressing the pathogenic P301L mutation remained localized to the soluble fraction. To investigate the possibility that the A152T variant might alter the phosphorylation state of tau on T152 or the neighboring T153 residue, we generated a novel antibody that revealed significant accumulation of soluble tau species that were hyperphosphorylated on T153 (pT153) in TauA152T-AAV mice, which were absent the soluble fraction of TauP301L-AAV mice. Providing new insight into the role of A152T in modifying risk of tauopathy, as well as validating the TauA152T-AAV model, we demonstrate that the presence of soluble pT153-positive tau species in human postmortem brain tissue differentiates A152T carriers from noncarriers, independent of disease classification. These results implicate both phosphorylation of T153 and an altered solubility profile in the mechanism by which A152T modulates disease risk.


Assuntos
Encéfalo/metabolismo , Predisposição Genética para Doença , Doenças Neurodegenerativas/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Gliose/patologia , Humanos , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Fosforilação , Proteínas tau/genética
17.
Toxicol Sci ; 167(1): 105-115, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30371865

RESUMO

Heavy metals, such as lead, mercury, and selenium, have been epidemiologically linked with a risk of ALS, but a molecular mechanism proving the connection has not been shown. A screen of putative developmental neurotoxins demonstrated that heavy metals (lead, mercury, and tin) trigger accumulation of TDP-43 into nuclear granules with concomitant loss of diffuse nuclear TDP-43. Lead (Pb) and methyl mercury (MeHg) disrupt the homeostasis of TDP-43 in neurons, resulting in increased levels of transcript and increased splicing activity of TDP-43. TDP-43 homeostasis is tightly regulated, and positively or negatively altering its splicing-suppressive activity has been shown to be deleterious to neurons. These changes are associated with the liquid-liquid phase separation of TDP-43 into nuclear bodies. We show that lead directly facilitates phase separation of TDP-43 in a dose-dependent manner in vitro, possibly explaining the means by which lead treatment results in neuronal nuclear granules. Metal toxicants also triggered the accumulation of insoluble TDP-43 in cultured cells and in the cortices of exposed mice. These results provide novel evidence of a direct mechanistic link between heavy metals, which are a commonly cited environmental risk of ALS, and molecular changes in TDP-43, the primary pathological protein accumulating in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Córtex Cerebral/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Hipocampo/efeitos dos fármacos , Metais Pesados/toxicidade , Neurônios/efeitos dos fármacos , Esclerose Lateral Amiotrófica/patologia , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Fluorescência Verde/genética , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Endogâmicos BALB C , Neurônios/metabolismo , Células PC12 , Cultura Primária de Células , Splicing de RNA , Ratos
18.
Neuron ; 99(5): 925-940.e7, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189209

RESUMO

Tau is the major constituent of neurofibrillary tangles in Alzheimer's disease (AD), but the mechanism underlying tau-associated neural damage remains unclear. Here, we show that tau can directly interact with nucleoporins of the nuclear pore complex (NPC) and affect their structural and functional integrity. Pathological tau impairs nuclear import and export in tau-overexpressing transgenic mice and in human AD brain tissue. Furthermore, the nucleoporin Nup98 accumulates in the cell bodies of some tangle-bearing neurons and can facilitate tau aggregation in vitro. These data support the hypothesis that tau can directly interact with NPC components, leading to their mislocalization and consequent disruption of NPC function. This raises the possibility that NPC dysfunction contributes to tau-induced neurotoxicity in AD and tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas tau/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Núcleo Celular/patologia , Citoplasma/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
19.
J Biol Chem ; 292(37): 15277-15286, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760828

RESUMO

The aberrant accumulation of tau protein is a pathological hallmark of a class of neurodegenerative diseases known as tauopathies, including Alzheimer's disease and related dementias. On the basis of previous observations that tau is a direct substrate of histone deacetylase 6 (HDAC6), we sought to map all HDAC6-responsive sites in tau and determine how acetylation in a site-specific manner affects tau's biophysical properties in vitro Our findings indicate that several acetylation sites in tau are responsive to HDAC6 and that acetylation on Lys-321 (within a KCGS motif) is both essential for acetylation-mediated inhibition of tau aggregation in vitro and a molecular tactic for preventing phosphorylation on the downstream Ser-324 residue. To determine the functional consequence of this HDAC6-regulated phosphorylation event, we examined tau's ability to promote microtubule assembly and found that phosphorylation of Ser-324 interferes with the normal microtubule-stabilizing function of tau. Tau phosphorylation of Ser-324 (pSer-324) has not previously been evaluated in the context of tauopathy, and here we observed increased deposition of pSer-324-positive tau both in mouse models of tauopathy and in patients with Alzheimer's disease. These findings uncover a novel acetylation-phosphorylation switch at Lys-321/Ser-324 that coordinately regulates tau polymerization and function. Because the disease relevance of this finding is evident, additional studies are needed to examine the role of pSer-324 in tau pathobiology and to determine whether therapeutically modulating this acetylation-phosphorylation switch affects disease progression in vivo.


Assuntos
Doença de Alzheimer/metabolismo , Histona Desacetilases/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Tauopatias/metabolismo , Proteínas tau/metabolismo , Acetilação/efeitos dos fármacos , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Humanos , Lisina/metabolismo , Masculino , Camundongos Transgênicos , Mutação , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Serina/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/patologia , Bancos de Tecidos , Proteínas tau/química , Proteínas tau/genética
20.
Mol Neurodegener ; 12(1): 55, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743268

RESUMO

Haploinsufficiency of GRN, the gene encoding progranulin (PGRN), causes frontotemporal lobar degeneration (FTLD), the second most common cause of early-onset dementia. Receptor-mediated lysosomal targeting has been shown to regulate brain PGRN levels, and complete deficiency of PGRN is a direct cause of neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Here we show that the lysosomal cysteine protease cathepsin L (Cat L) can mediate the proteolytic cleavage of intracellular PGRN into poly-granulin and granulin fragments. Further, PGRN and Cat L co-localize in lysosomes of HEK293 cells, iPSC-derived neurons and human cortical neurons from human postmortem tissue. These data identify Cat L as a key intracellular lysosomal PGRN protease, and provides an intriguing new link between lysosomal dysfunction and FTLD.


Assuntos
Catepsina L/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Proteínas/metabolismo , Células Cultivadas , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Neurônios/metabolismo , Progranulinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA