Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38617272

RESUMO

Ebola virus (EBOV) is a high-consequence filovirus that gives rise to frequent epidemics with high case fatality rates and few therapeutic options. Here, we applied image-based screening of a genome-wide CRISPR library to systematically identify host cell regulators of Ebola virus infection in 39,085,093 million single cells. Measuring viral RNA and protein levels together with their localization in cells identified over 998 related host factors and provided detailed information about the role of each gene across the virus replication cycle. We trained a deep learning model on single-cell images to associate each host factor with predicted replication steps, and confirmed the predicted relationship for select host factors. Among the findings, we showed that the mitochondrial complex III subunit UQCRB is a post-entry regulator of Ebola virus RNA replication, and demonstrated that UQCRB inhibition with a small molecule reduced overall Ebola virus infection with an IC50 of 5 µM. Using a random forest model, we also identified perturbations that reduced infection by disrupting the equilibrium between viral RNA and protein. One such protein, STRAP, is a spliceosome-associated factor that was found to be closely associated with VP35, a viral protein required for RNA processing. Loss of STRAP expression resulted in a reduction in full-length viral genome production and subsequent production of non-infectious virus particles. Overall, the data produced in this genome-wide high-content single-cell screen and secondary screens in additional cell lines and related filoviruses (MARV and SUDV) revealed new insights about the role of host factors in virus replication and potential new targets for therapeutic intervention.

2.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645119

RESUMO

STING is an innate immune sensor that traffics across many cellular compartments to carry out its function of detecting cyclic di-nucleotides and triggering defense processes. Mutations in factors that regulate this process are often linked to STING-dependent human inflammatory disorders. To systematically identify factors involved in STING trafficking, we performed a genome-wide optical pooled screen and examined the impact of genetic perturbations on intracellular STING localization. Based on subcellular imaging of STING protein and trafficking markers in 45 million cells perturbed with sgRNAs, we defined 464 clusters of gene perturbations with similar cellular phenotypes. A higher-dimensional focused optical pooled screen on 262 perturbed genes which assayed 11 imaging channels identified 73 finer phenotypic clusters. In a cluster containing USE1, a protein that mediates Golgi to ER transport, we found a gene of unknown function, C19orf25. Consistent with the known role of USE1, loss of C19orf25 enhanced STING signaling. Other clusters contained subunits of the HOPS, GARP and RIC1-RGP1 complexes. We show that HOPS deficiency delayed STING degradation and consequently increased signaling. Similarly, GARP/RIC1-RGP1 loss increased STING signaling by delaying STING exit from the Golgi. Our findings demonstrate that genome-wide genotype-phenotype maps based on high-content cell imaging outperform other screening approaches, and provide a community resource for mining for factors that impact STING trafficking as well as other cellular processes observable in our dataset.

3.
Science ; 381(6657): 508-514, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535724

RESUMO

Proton leakage from organelles is a common signal for noncanonical light chain 3B (LC3B) lipidation and inflammasome activation, processes induced upon stimulator of interferon genes (STING) activation. On the basis of structural analysis, we hypothesized that human STING is a proton channel. Indeed, we found that STING activation induced a pH increase in the Golgi and that STING reconstituted in liposomes enabled transmembrane proton transport. Compound 53 (C53), a STING agonist that binds the putative channel interface, blocked STING-induced proton flux in the Golgi and in liposomes. STING-induced LC3B lipidation and inflammasome activation were also inhibited by C53, suggesting that STING's channel activity is critical for these two processes. Thus, STING's interferon-induction function can be decoupled from its roles in LC3B lipidation and inflammasome activation.


Assuntos
Canais Iônicos , Proteínas de Membrana , Prótons , Humanos , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Inflamassomos/metabolismo , Canais Iônicos/agonistas , Canais Iônicos/química , Canais Iônicos/metabolismo , Lipossomos , Proteínas de Membrana/agonistas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Domínios Proteicos , Células HEK293
4.
Proc Natl Acad Sci U S A ; 120(16): e2210623120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37043539

RESUMO

The infection of mammalian cells by viruses and innate immune responses to infection are spatiotemporally organized processes. Cytosolic RNA sensors trigger nuclear translocation of the transcription factor interferon regulatory factor 3 (IRF3) and consequent induction of host immune responses to RNA viruses. Previous genetic screens for factors involved in viral sensing did not resolve changes in the subcellular localization of host or viral proteins. Here, we increased the throughput of our optical pooled screening technology by over fourfold. This allowed us to carry out a genome-wide CRISPR knockout screen using high-resolution multiparameter imaging of cellular responses to Sendai virus infection coupled with in situ cDNA sequencing by synthesis (SBS) to identify 80,408 single guide RNAs (sgRNAs) in 10,366,390 cells-over an order of magnitude more genomic perturbations than demonstrated previously using an in situ SBS readout. By ranking perturbations using human-designed and deep learning image feature scores, we identified regulators of IRF3 translocation, Sendai virus localization, and peroxisomal biogenesis. Among the hits, we found that ATP13A1, an ER-localized P5A-type ATPase, is essential for viral sensing and is required for targeting of mitochondrial antiviral signaling protein (MAVS) to mitochondrial membranes where MAVS must be localized for effective signaling through retinoic acid-inducible gene I (RIG-I). The ability to carry out genome-wide pooled screens with complex high-resolution image-based phenotyping dramatically expands the scope of functional genomics approaches.


Assuntos
Vírus de RNA , Transdução de Sinais , Animais , Humanos , RNA , Imunidade Inata/genética , Vírus de RNA/genética , Antivirais , Fator Regulador 3 de Interferon/metabolismo , Mamíferos/genética
5.
Nat Commun ; 14(1): 611, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739287

RESUMO

Stimulator of interferon genes (STING) is an intracellular sensor of cyclic di-nucleotides involved in the innate immune response against pathogen- or self-derived DNA. STING trafficking is tightly linked to its function, and its dysregulation can lead to disease. Here, we systematically characterize genes regulating STING trafficking and examine their impact on STING-mediated responses. Using proximity-ligation proteomics and genetic screens, we demonstrate that an endosomal sorting complex required for transport (ESCRT) complex containing HGS, VPS37A and UBAP1 promotes STING degradation, thereby terminating STING-mediated signaling. Mechanistically, STING oligomerization increases its ubiquitination by UBE2N, forming a platform for ESCRT recruitment at the endosome that terminates STING signaling via sorting in the lysosome. Finally, we show that expression of a UBAP1 mutant identified in patients with hereditary spastic paraplegia and associated with disrupted ESCRT function, increases steady-state STING-dependent type I IFN responses in healthy primary monocyte-derived dendritic cells and fibroblasts. Based on these findings, we propose that STING is subject to a tonic degradative flux and that the ESCRT complex acts as a homeostatic regulator of STING signaling.


Assuntos
Proteínas de Membrana , Nucleotídeos Cíclicos , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Imunidade Inata , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/farmacologia
6.
Nat Protoc ; 17(2): 476-512, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35022620

RESUMO

Discovery of the genetic components underpinning fundamental and disease-related processes is being rapidly accelerated by combining efficient, programmable genetic engineering with phenotypic readouts of high spatial, temporal and/or molecular resolution. Microscopy is a fundamental tool for studying cell biology, but its lack of high-throughput sequence readouts hinders integration in large-scale genetic screens. Optical pooled screens using in situ sequencing provide massively scalable integration of barcoded lentiviral libraries (e.g., CRISPR perturbation libraries) with high-content imaging assays, including dynamic processes in live cells. The protocol uses standard lentiviral vectors and molecular biology, providing single-cell resolution of phenotype and engineered genotype, scalability to millions of cells and accurate sequence reads sufficient to distinguish >106 perturbations. In situ amplification takes ~2 d, while sequencing can be performed in ~1.5 h per cycle. The image analysis pipeline provided enables fully parallel automated sequencing analysis using a cloud or cluster computing environment.


Assuntos
RNA Guia de Cinetoplastídeos
7.
Cell ; 179(3): 787-799.e17, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626775

RESUMO

Genetic screens are critical for the systematic identification of genes underlying cellular phenotypes. Pooling gene perturbations greatly improves scalability but is not compatible with imaging of complex and dynamic cellular phenotypes. Here, we introduce a pooled approach for optical genetic screens in mammalian cells. We use targeted in situ sequencing to demultiplex a library of genetic perturbations following image-based phenotyping. We screened a set of 952 genes across millions of cells for involvement in nuclear factor κB (NF-κB) signaling by imaging the translocation of RelA (p65) to the nucleus. Screening at a single time point across 3 cell lines recovered 15 known pathway components, while repeating the screen with live-cell imaging revealed a role for Mediator complex subunits in regulating the duration of p65 nuclear retention. These results establish a highly multiplexed approach to image-based screens of spatially and temporally defined phenotypes with pooled libraries.


Assuntos
Testes Genéticos , Genômica , NF-kappa B/genética , Fator de Transcrição RelA/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Complexo Mediador/genética , RNA Guia de Cinetoplastídeos/genética
8.
Methods Mol Biol ; 1974: 41-56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31098994

RESUMO

In RNA interference (RNAi), silencing is achieved through the interaction of double-stranded small interfering RNAs (siRNAs) with essential RNAi pathway proteins, including Argonaute 2 (Ago2). Based on these interactions, one strand of the siRNA is loaded into Ago2 forming the active RNA-induced silencing complex (RISC). Optimal siRNAs maximize RISC activity against the intended target and minimize off-target silencing. To achieve the desired activity and specificity, selection of the appropriate siRNA strand for loading into Ago2 is essential. Here, we provide a protocol to quantify the relative loading of individual siRNA strands into Ago2, one factor in determining the capacity of a siRNA to achieve silencing activity and target specificity.


Assuntos
Proteínas Argonautas/genética , Neoplasias/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Carboxipeptidases/genética , Células HeLa , Humanos , Neoplasias/terapia , RNA de Cadeia Dupla/genética , Ribonuclease III/genética
9.
Cell Rep ; 25(1): 95-106.e6, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30282041

RESUMO

Activation of the TLR4 signaling pathway by lipopolysaccharide (LPS) leads to induction of both inflammatory and interferon-stimulated genes, but the mechanisms through which these coordinately activated transcriptional programs are balanced to promote an optimal innate immune response remain poorly understood. In a genome-wide small interfering RNA (siRNA) screen of the LPS-induced tumor necrosis factor α (TNF-α) response in macrophages, we identify the interferon-stimulated protein IFIT1 as a negative regulator of the inflammatory gene program. Transcriptional profiling further identifies a positive regulatory role for IFIT1 in type I interferon expression, implicating IFIT1 as a reciprocal modulator of LPS-induced gene classes. We demonstrate that these effects of IFIT1 are mediated through modulation of a Sin3A-HDAC2 transcriptional regulatory complex at LPS-induced gene loci. Beyond the well-studied role of cytosolic IFIT1 in restricting viral replication, our data demonstrate a function for nuclear IFIT1 in differential transcriptional regulation of separate branches of the LPS-induced gene program.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Macrófagos/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Transdução de Sinais , Complexo Correpressor Histona Desacetilase e Sin3 , Fator de Necrose Tumoral alfa/imunologia , Células U937
10.
Appl Microbiol Biotechnol ; 101(14): 5645-5652, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28466111

RESUMO

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48-120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 µg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Brevibacillus/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/isolamento & purificação , Brevibacillus/genética , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/química , Cistina/química , Camundongos , Células NIH 3T3 , Neurônios/química , Neurônios/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura
11.
Nucleic Acid Ther ; 26(5): 309-317, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27399870

RESUMO

Efficient short interfering RNA (siRNA)-mediated gene silencing requires selection of a sequence that is complementary to the intended target and possesses sequence and structural features that encourage favorable functional interactions with the RNA interference (RNAi) pathway proteins. In this study, we investigated how terminal sequence and structural characteristics of siRNAs contribute to siRNA strand loading and silencing activity and how these characteristics ultimately result in a functionally asymmetric duplex in cultured HeLa cells. Our results reiterate that the most important characteristic in determining siRNA activity is the 5' terminal nucleotide identity. Our findings further suggest that siRNA loading is controlled principally by the hybridization stability of the 5' terminus (Nucleotides: 1-2) of each siRNA strand, independent of the opposing terminus. Postloading, RNA-induced silencing complex (RISC)-specific activity was found to be improved by lower hybridization stability in the 5' terminus (Nucleotides: 3-4) of the loaded siRNA strand and greater hybridization stability toward the 3' terminus (Nucleotides: 17-18). Concomitantly, specific recognition of the 5' terminal nucleotide sequence by human Argonaute 2 (Ago2) improves RISC half-life. These findings indicate that careful selection of siRNA sequences can maximize both the loading and the specific activity of the intended guide strand.


Assuntos
Proteínas Argonautas/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Complexo de Inativação Induzido por RNA/genética , Proteínas Argonautas/metabolismo , Meia-Vida , Células HeLa , Humanos , Cinética , Hibridização de Ácido Nucleico , Estabilidade de RNA , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Relação Estrutura-Atividade , Termodinâmica
12.
Cytokine Growth Factor Rev ; 26(2): 249-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25524087

RESUMO

Multiple sclerosis (MS) is a progressive disorder of the central nervous system, often resulting in significant disability in early adulthood. The field of pharmacogenomics holds promise in distinguishing responders from non-responders to drug treatment. Most studies on genetic polymorphisms in MS have addressed treatment with interferon-ß, yet few findings have been replicated. This review outlines the barriers that currently hinder the validity, reproducibility, and inter-study comparison of pharmacogenomics research as it relates to the use of interferon-ß. Notably, statistical power, varying definitions of responder status, varying assay and genotyping methodologies, and anti-interferon-ß neutralizing antibodies significantly confound existing data. Future work should focus on addressing these factors in order to optimize interferon-ß treatment outcomes in MS.


Assuntos
Interferon beta/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Farmacogenética , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Fatores de Confusão Epidemiológicos , Testes Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Fatores Reguladores de Interferon/genética , Interferon beta/imunologia , Esclerose Múltipla/imunologia , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
13.
Cell Mol Neurobiol ; 34(8): 1081-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25118615

RESUMO

Pharmacogenomics has a significant potential to impact how we treat diseases. It involves targeting genetically identifiable populations with therapeutic interventions that promises to yield immediate positive health outcomes with lower or no side effects. The 'trial and error' method of treatment will no longer be necessary with the successful implementation of personalized medicine. The following is an overview of some new developments in pharmacogenomics of multiple sclerosis, and how it has the potential to improve future treatment.


Assuntos
Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Farmacogenética/tendências , Animais , Humanos , Pesquisa/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA