Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Commun ; 15(1): 3777, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710683

RESUMO

Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful method for profiling complex biological samples. However, batch effects typically arise from differences in sample processing protocols, experimental conditions, and data acquisition techniques, significantly impacting the interpretability of results. Correcting batch effects is crucial for the reproducibility of omics research, but current methods are not optimal for the removal of batch effects without compressing the genuine biological variation under study. We propose a suite of Batch Effect Removal Neural Networks (BERNN) to remove batch effects in large LC-MS experiments, with the goal of maximizing sample classification performance between conditions. More importantly, these models must efficiently generalize in batches not seen during training. A comparison of batch effect correction methods across five diverse datasets demonstrated that BERNN models consistently showed the strongest sample classification performance. However, the model producing the greatest classification improvements did not always perform best in terms of batch effect removal. Finally, we show that the overcorrection of batch effects resulted in the loss of some essential biological variability. These findings highlight the importance of balancing batch effect removal while preserving valuable biological diversity in large-scale LC-MS experiments.


Assuntos
Espectrometria de Massas , Redes Neurais de Computação , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massa com Cromatografia Líquida
2.
Alzheimers Dement (N Y) ; 10(1): e12440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356471

RESUMO

INTRODUCTION: While Alzheimer's disease (AD) is defined by amyloid-ß plaques and tau tangles in the brain, it is evident that many other pathophysiological processes such as inflammation, neurovascular dysfunction, oxidative stress, and metabolic derangements also contribute to the disease process and that varying contributions of these pathways may reflect the heterogeneity of AD. Here, we used a previously validated panel of cerebrospinal fluid (CSF) biomarkers to explore the degree to which different pathophysiological domains are dysregulated in AD and how they relate to each other. METHODS: Twenty-five CSF biomarkers were analyzed in individuals with a clinical diagnosis of AD verified by positive CSF AD biomarkers (AD, n = 54) and cognitively unimpaired controls negative for CSF AD biomarkers (CU-N, n = 26) using commercial single- and multi-plex immunoassays. RESULTS: We noted that while AD was associated with increased levels of only three biomarkers (MMP-10, FABP3, and 8OHdG) on a group level, half of all AD participants had increased levels of biomarkers belonging to at least two pathophysiological domains reflecting the diversity in AD. LASSO modeling showed that a panel of FABP3, 24OHC, MMP-10, MMP-2, and 8OHdG constituted the most relevant and minimally correlated set of variables differentiating AD from CU-N. Interestingly, factor analysis showed that two markers of metabolism and oxidative stress (24OHC and 8OHdG) contributed independent information separate from MMP-10 and FABP3 suggestive of two independent pathophysiological pathways in AD, one reflecting neurodegeneration and vascular pathology, and the other associated with metabolism and oxidative stress. DISCUSSION: Better understanding of the heterogeneity among individuals with AD and the different contributions of pathophysiological processes besides amyloid-ß and tau will be crucial for optimizing personalized treatment strategies. Highlights: A panel of 25 highly validated biomarker assays were measured in CSF.MMP10, FABP3, and 8OHdG were increased in AD in univariate analysis.Many individuals with AD had increased levels of more than one biomarker.Markers of metabolism and oxidative stress contributed to an AD multianalyte profile.Assessing multiple biomarker domains is important to understand disease heterogeneity.

3.
Brain ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315899

RESUMO

Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF, and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (Flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.

4.
Sci Rep ; 13(1): 22406, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104170

RESUMO

Alzheimer's disease (AD) is a complex and heterogeneous neurodegenerative disorder with contributions from multiple pathophysiological pathways. One of the long-recognized and important features of AD is disrupted cerebral glucose metabolism, but the underlying molecular basis remains unclear. In this study, unbiased mass spectrometry was used to survey CSF from a large clinical cohort, comparing patients who are either cognitively unimpaired (CU; n = 68), suffering from mild-cognitive impairment or dementia from AD (MCI-AD, n = 95; DEM-AD, n = 72), or other causes (MCI-other, n = 77; DEM-other, n = 23), or Normal Pressure Hydrocephalus (NPH, n = 57). The results revealed changes related to altered glucose metabolism. In particular, two glycolytic enzymes, pyruvate kinase (PKM) and aldolase A (ALDOA), were found to be upregulated in CSF from patients with AD compared to those with other neurological conditions. Increases in full-length PKM and ALDOA levels in CSF were confirmed with immunoblotting. Levels of these enzymes furthermore correlated negatively with CSF glucose in matching CSF samples. PKM levels were also found to be increased in AD in publicly available brain-tissue data. These results indicate that ALDOA and PKM may act as technically-robust potential biomarkers of glucose metabolism dysregulation in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Hidrocefalia de Pressão Normal , Humanos , Doença de Alzheimer/psicologia , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/psicologia , Espectrometria de Massas , Glicólise , Glucose , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
6.
Res Sq ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37461556

RESUMO

Background: Alzheimer's disease (AD) is a complex heterogenous neurodegenerative disorder, characterized by multiple pathophysiologies, including disruptions in brain metabolism. Defining markers for patient stratification across these pathophysiologies is an important step towards personalized treatment of AD. Efficient brain glucose metabolism is essential to sustain neuronal activity, but hypometabolism is consistently observed in AD. The molecular changes underlying these observations remain unclear. Recent studies have indicated dysregulation of several glycolysis markers in AD cerebrospinal fluid and tissue. Methods: In this study, unbiased mass spectrometry was used to perform a deep proteomic survey of cerebrospinal fluid (CSF) from a large-scale clinically complex cohort to uncover changes related to impaired glucose metabolism. Results: Two glycolytic enzymes, Pyruvate kinase (PKM) and Aldolase A (ALDOA) were found to be specifically upregulated in AD CSF compared to other non-AD groups. Presence of full-length protein of these enzymes in CSF was confirmed through immunoblotting. Levels of tryptic peptides of these enzymes correlated significantly with CSF glucose and CSF lactate in matching CSF samples. Conclusions: The results presented here indicate a general dysregulation of glucose metabolism in the brain in AD. We highlight two markers ALDOA and PKM that may act as potential functionally-relevant biomarkers of glucose metabolism dysregulation in AD.

7.
Front Neurol ; 14: 1069411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937522

RESUMO

Background: The last few years have seen major advances in blood biomarkers for Alzheimer's Disease (AD) with the development of ultrasensitive immunoassays, promising to transform how we diagnose, prognose, and track progression of neurodegenerative dementias. Methods: We evaluated a panel of four novel ultrasensitive electrochemiluminescence (ECL) immunoassays against presumed CNS derived proteins of interest in AD in plasma [phosphorylated-Tau181 (pTau181), total Tau (tTau), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP)]. Two sets of banked plasma samples from the Massachusetts Alzheimer's Disease Research Center's longitudinal cohort study were examined: A longitudinal prognostic sample (n = 85) consisting of individuals with mild cognitive impairment (MCI) and 4 years of follow-up and a cross-sectional sample (n = 238) consisting of individuals with AD, other neurodegenerative diseases (OND), and normal cognition (CN). Results: Participants with MCI who progressed to dementia due to probable AD during follow-up had higher baseline plasma concentrations of pTau181, NfL, and GFAP compared to non-progressors. The best prognostic discrimination was observed with pTau181 (AUC = 0.83, 1.7-fold increase) and GFAP (AUC = 0.83, 1.6-fold increase). Participants with autopsy- and/or biomarker verified AD had higher plasma levels of pTau181, tTau and GFAP compared to CN and OND, while NfL was elevated in AD and further increased in OND. The best diagnostic discrimination was observed with pTau181 (AD vs CN: AUC = 0.90, 2-fold increase; AD vs. OND: AUC = 0.84, 1.5-fold increase) but tTau, NfL, and GFAP also showed good discrimination between AD and CN (AUC = 0.81-0.85; 1.5-2.2 fold increase). Conclusions: These new ultrasensitive ECL plasma assays for pTau181, tTau, NfL, and GFAP demonstrated diagnostic utility for detection of AD. Moreover, the absolute baseline plasma levels of pTau181 and GFAP reflect cognitive decline over the next 4 years, providing prognostic information that may have utility in both clinical practice and clinical trial populations.

8.
J Am Soc Mass Spectrom ; 34(4): 649-667, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36912488

RESUMO

The granin neuropeptide family is composed of acidic secretory signaling molecules that act throughout the nervous system to help modulate synaptic signaling and neural activity. Granin neuropeptides have been shown to be dysregulated in different forms of dementia, including Alzheimer's disease (AD). Recent studies have suggested that the granin neuropeptides and their protease-cleaved bioactive peptides (proteoforms) may act as both powerful drivers of gene expression and as a biomarker of synaptic health in AD. The complexity of granin proteoforms in human cerebrospinal fluid (CSF) and brain tissue has not been directly addressed. We developed a reliable nontryptic mass spectrometry assay to comprehensively map and quantify endogenous neuropeptide proteoforms in the brain and CSF of individuals diagnosed with mild cognitive impairment and dementia due to AD compared to healthy controls, individuals with preserved cognition despite AD pathology ("Resilient"), and those with impaired cognition but no AD or other discernible pathology ("Frail"). We drew associations between neuropeptide proteoforms, cognitive status, and AD pathology values. Decreased levels of VGF proteoforms were observed in CSF and brain tissue from individuals with AD compared to controls, while select proteoforms from chromogranin A showed the opposite effect. To address mechanisms of neuropeptide proteoform regulation, we showed that the proteases Calpain-1 and Cathepsin S can cleave chromogranin A, secretogranin-1, and VGF into proteoforms found in both the brain and CSF. We were unable to demonstrate differences in protease abundance in protein extracts from matched brains, suggesting that regulation may occur at the level of transcription.


Assuntos
Doença de Alzheimer , Neuropeptídeos , Humanos , Doença de Alzheimer/patologia , Cromograninas/metabolismo , Cromogranina A/metabolismo , Fragmentos de Peptídeos/metabolismo , Neuropeptídeos/metabolismo , Encéfalo/metabolismo , Biomarcadores , Peptídeo Hidrolases/metabolismo , Peptídeos beta-Amiloides/metabolismo
9.
Brain Commun ; 4(4): fcac155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800899

RESUMO

Plasma-based biomarkers present a promising approach in the research and clinical practice of Alzheimer's disease as they are inexpensive, accessible and minimally invasive. In particular, prognostic biomarkers of cognitive decline may aid in planning and management of clinical care. Although recent studies have demonstrated the prognostic utility of plasma biomarkers of Alzheimer pathology or neurodegeneration, such as pTau-181 and NF-L, whether other plasma biomarkers can further improve prediction of cognitive decline is undetermined. We conducted an observational cohort study to determine the prognostic utility of plasma biomarkers in predicting progression to dementia for individuals presenting with mild cognitive impairment due to probable Alzheimer's disease. We used the Olink™ Proximity Extension Assay technology to measure the level of 460 circulating proteins in banked plasma samples of all participants. We used a discovery data set comprised 60 individuals with mild cognitive impairment (30 progressors and 30 stable) and a validation data set consisting of 21 stable and 21 progressors. We developed a machine learning model to distinguish progressors from stable and used 44 proteins with significantly different plasma levels in progressors versus stable along with age, sex, education and baseline cognition as candidate features. A model with age, education, APOE genotype, baseline cognition, plasma pTau-181 and 12 plasma Olink protein biomarker levels was able to distinguish progressors from stable with 86.7% accuracy (mean area under the curve = 0.88). In the validation data set, the model accuracy was 78.6%. The Olink proteins selected by the model included those associated with vascular injury and neuroinflammation (e.g. IL-8, IL-17A, TIMP-4, MMP7). In addition, to compare these prognostic biomarkers to those that are altered in Alzheimer's disease or other types of dementia relative to controls, we analyzed samples from 20 individuals with Alzheimer, 30 with non-Alzheimer dementias and 34 with normal cognition. The proteins NF-L and PTP-1B were significantly higher in both Alzheimer and non-Alzheimer dementias compared with cognitively normal individuals. Interestingly, the prognostic markers of decline at the mild cognitive impairment stage did not overlap with those that differed between dementia and control cases. In summary, our findings suggest that plasma biomarkers of inflammation and vascular injury are associated with cognitive decline. Developing a plasma biomarker profile could aid in prognostic deliberations and identify individuals at higher risk of dementia in clinical practice.

10.
Front Neurol ; 13: 889647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734478

RESUMO

The core Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers; amyloid-ß (Aß), total tau (t-tau), and phosphorylated tau (p-tau181), are strong indicators of the presence of AD pathology, but do not correlate well with disease progression, and can be difficult to implement in longitudinal studies where repeat biofluid sampling is required. As a result, blood-based biomarkers are increasingly being sought as alternatives. In this study, we aimed to evaluate a promising blood biomarker discovery technology, Olink Proximity Extension Assays for technical reproducibility characteristics in order to highlight the advantages and disadvantages of using this technology in biomarker discovery in AD. We evaluated the performance of five Olink Proteomic multiplex proximity extension assays (PEA) in plasma samples. Three technical control samples included on each plate allowed calculation of technical variability. Biotemporal stability was measured in three sequential annual samples from 54 individuals with and without AD. Coefficients of variation (CVs), analysis of variance (ANOVA), and variance component analyses were used to quantify technical and individual variation over time. We show that overall, Olink assays are technically robust, with the largest experimental variation stemming from biological differences between individuals for most analytes. As a powerful illustration of one of the potential pitfalls of using a multi-plexed technology for discovery, we performed power calculations using the baseline samples to demonstrate the size of study required to overcome the need for multiple test correction with this technology. We show that the power of moderate effect size proteins was strongly reduced, and as a result investigators should strongly consider pooling resources to perform larger studies using this multiplexed technique where possible.

11.
Brain Commun ; 4(3): fcac103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611312

RESUMO

Proteomic characterization of human brain tissue is increasingly utilized to identify potential novel biomarkers and drug targets for a variety of neurological diseases. In whole-tissue studies, results may be driven by changes in the proportion of the largest and most abundant organelles or tissue cell-type composition. Spatial proteomics approaches enhance our knowledge of disease mechanisms and changing signalling pathways at the subcellular level by taking into account the importance of cellular localization, which critically influences protein function. Density gradient-based ultracentrifugation methods allow for subcellular fractionation and have been utilized in cell lines, mouse and human brain tissue to quantify thousands of proteins in specific enriched organelles such as the pre- and post-synapse. Serial ultracentrifugation methods allow for the analysis of multiple cellular organelles from the same biological sample, and to our knowledge have not been previously applied to frozen post-mortem human brain tissue. The use of frozen human tissue for tissue fractionation faces two major challenges, the post-mortem interval, during which proteins may leach from their usual location into the cytosol, and freezing, which results in membrane breakdown. Despite these challenges, in this proof-of-concept study, we show that the majority of proteins segregate reproducibly into crude density-based centrifugation fractions, that the fractions are enriched for the appropriate organellar markers and that significant differences in protein localization can be observed between tissue from individuals with Alzheimer's disease and control individuals.

12.
Alzheimers Res Ther ; 14(1): 58, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461266

RESUMO

BACKGROUND: There is currently a lack of reliable and easily accessible biomarkers predicting cognitive decline in Alzheimer's disease (AD). Synaptic dysfunction and loss occur early in AD and synaptic loss measured in the brain tissue and by PET are closely linked to cognitive decline, rendering synaptic proteins a promising target for biomarker development. METHODS: We used novel Simoa assays to measure cerebrospinal fluid (CSF) levels of two synaptic biomarker candidates, postsynaptic density protein 95 (PSD-95/DLG4), and the presynaptically localized synaptosomal-associated protein 25 (SNAP-25), as well as neurogranin (Ng), an established postsynaptic biomarker. CSF samples from two well-characterized cohorts (n=178 and n=156) were selected from banked samples obtained from diagnostic lumbar punctures containing subjects with amyloid-ß (Aß) positive AD, subjects with non-AD neurodegenerative diseases, subjects with other neurological conditions, and healthy controls (HC). RESULTS: All subjects had detectable CSF levels of PSD-95, SNAP-25, and Ng. CSF levels of PSD-95, SNAP-25, and Ng were all correlated, with the strongest correlation between the presynaptic SNAP-25 and the postsynaptic neurogranin. AD subjects had on average higher concentrations of all three synaptic markers compared to those with non-AD neurodegenerative diseases, other neurological disorders, and HCs. Increased CSF levels of PSD-95, SNAP-25, and Ng were, however, not specific for AD and were present in sporadic cases with inflammatory or vascular disorders as well. High CSF levels of PSD-95 were also observed in a few subjects with other neurodegenerative disorders. CONCLUSION: The data establishes PSD-95 as a promising CSF marker for neurodegenerative disease synaptic pathology, while SNAP-25 and Ng appear to be somewhat more specific for AD. Together, these synaptic markers hold promise to identify early AD pathology, to correlate with cognitive decline, and to monitor responses to disease-modifying drugs reducing synaptic degeneration.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Proteína 4 Homóloga a Disks-Large/metabolismo , Humanos , Doenças Neurodegenerativas/diagnóstico , Neurogranina/líquido cefalorraquidiano , Proteína 25 Associada a Sinaptossoma/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
13.
Alzheimers Dement ; 18(4): 645-653, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34160128

RESUMO

INTRODUCTION: Immune dysregulation is implicated in neurodegeneration and altered cytokine levels are seen in people with dementia. However, whether cytokine levels are predictive of cognitive decline in cognitively unimpaired (CU) elderly, especially in the setting of elevated amyloid beta (Aß), remains unclear. METHODS: We measured nine cytokines in the baseline plasma of 298 longitudinally followed CU elderly and assessed whether these measures were associated with cognitive decline, alone or synergistically with Aß. We next examined associations between cytokine levels and neuroimaging biomarkers of Aß/tau/neurodegeneration. RESULTS: Higher IL-12p70 was associated with slower cognitive decline in the setting of higher Aß (false discovery rate [FDR] = 0.0023), whereas higher IFN-γ was associated with slower cognitive decline independent of Aß (FDR = 0.013). Higher IL-12p70 was associated with less tau and neurodegeneration in participants with higher Aß. DISCUSSION: Immune dysregulation is implicated in early-stage cognitive decline, and greater IL-12/IFN-γ axis activation may be protective against cognitive decline and early-stage AD progression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Peptídeos beta-Amiloides , Biomarcadores , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Interleucina-12 , Tomografia por Emissão de Pósitrons , Proteínas tau
14.
Brain Commun ; 3(4): fcab261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778762

RESUMO

Neurosecretory protein VGF (non-acronymic) belongs to the granin family of neuropeptides. VGF and VGF-derived peptides have been repeatedly identified in well-powered and well-designed multi-omic studies as dysregulated in neurodegenerative and psychiatric diseases. New therapeutics is urgently needed for these devastating and costly diseases, as are new biomarkers to improve disease diagnosis and mechanistic understanding. From a list of 537 genes involved in Alzheimer's disease pathogenesis, VGF was highlighted by the Accelerating Medicines Partnership in Alzheimer's disease as the potential therapeutic target of greatest interest. VGF levels are consistently decreased in brain tissue and CSF samples from patients with Alzheimer's disease compared to controls, and its levels correlate with disease severity and Alzheimer's disease pathology. In the brain, VGF exists as multiple functional VGF-derived peptides. Full-length human VGF1-615 undergoes proteolytic processing by prohormone convertases and other proteases in the regulated secretory pathway to produce at least 12 active VGF-derived peptides. In cell and animal models, these VGF-derived peptides have been linked to energy balance regulation, neurogenesis, synaptogenesis, learning and memory, and depression-related behaviours throughout development and adulthood. The C-terminal VGF-derived peptides, TLQP-62 (VGF554-615) and TLQP-21 (VGF554-574) have differential effects on Alzheimer's disease pathogenesis, neuronal and microglial activity, and learning and memory. TLQP-62 activates neuronal cell-surface receptors and regulates long-term hippocampal memory formation. TLQP-62 also prevents immune-mediated memory impairment, depression-like and anxiety-like behaviours in mice. TLQP-21 binds to microglial cell-surface receptors, triggering microglial chemotaxis and phagocytosis. These actions were reported to reduce amyloid-ß plaques and decrease neuritic dystrophy in a transgenic mouse model of familial Alzheimer's disease. Expression differences of VGF-derived peptides have also been associated with frontotemporal lobar dementias, amyotrophic lateral sclerosis, Lewy body diseases, Huntington's disease, pain, schizophrenia, bipolar disorder, depression and antidepressant response. This review summarizes current knowledge and highlights questions for future investigation regarding the roles of VGF and its dysregulation in neurodegenerative and psychiatric disease. Finally, the potential of VGF and VGF-derived peptides as biomarkers and novel therapeutic targets for neurodegenerative and psychiatric diseases is highlighted.

16.
J Neuroinflammation ; 18(1): 103, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931093

RESUMO

BACKGROUND: Our understanding of the relationship between plasma and cerebrospinal fluid (CSF) remains limited, which poses an obstacle to the identification of blood-based markers of neuroinflammatory disorders. To better understand the relationship between peripheral and central nervous system (CNS) markers of inflammation before and after surgery, we aimed to examine whether surgery compromises the blood-brain barrier (BBB), evaluate postoperative changes in inflammatory markers, and assess the correlations between plasma and CSF levels of inflammation. METHODS: We examined the Role of Inflammation after Surgery for Elders (RISE) study of adults aged ≥ 65 who underwent elective hip or knee surgery under spinal anesthesia who had plasma and CSF samples collected at baseline and postoperative 1 month (PO1MO) (n = 29). Plasma and CSF levels of three inflammatory markers previously identified as increasing after surgery were measured using enzyme-linked immunosorbent assay: interleukin-6 (IL-6), C-reactive protein (CRP), and chitinase 3-like protein (also known as YKL-40). The integrity of the BBB was computed as the ratio of CSF/plasma albumin levels (Qalb). Mean Qalb and levels of inflammation were compared between baseline and PO1MO. Spearman correlation coefficients were used to determine the correlation between biofluids. RESULTS: Mean Qalb did not change between baseline and PO1MO. Mean plasma and CSF levels of CRP and plasma levels of YKL-40 and IL-6 were higher on PO1MO relative to baseline, with a disproportionally higher increase in CRP CSF levels relative to plasma levels (CRP tripled in CSF vs. increased 10% in plasma). Significant plasma-CSF correlations for CRP (baseline r = 0.70 and PO1MO r = 0.89, p < .01 for both) and IL-6 (PO1MO r = 0.48, p < .01) were observed, with higher correlations on PO1MO compared with baseline. CONCLUSIONS: In this elective surgical sample of older adults, BBB integrity was similar between baseline and PO1MO, plasma-CSF correlations were observed for CRP and IL-6, plasma levels of all three markers (CRP, IL-6, and YKL-40) increased from PREOP to PO1MO, and CSF levels of only CRP increased between the two time points. Our identification of potential promising plasma markers of inflammation in the CNS may facilitate the early identification of patients at greatest risk for neuroinflammation and its associated adverse cognitive outcomes.


Assuntos
Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Barreira Hematoencefálica , Inflamação/sangue , Inflamação/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Procedimentos Ortopédicos
17.
Neurobiol Aging ; 105: 99-114, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052751

RESUMO

Alzheimer's disease (AD) is defined by the presence of abundant amyloid-ß (Aß) and tau neuropathology. While this neuropathology is necessary for AD diagnosis, it is not sufficient for causing cognitive impairment. Up to one third of community dwelling older adults harbor intermediate to high levels of AD neuropathology at death yet demonstrate no significant cognitive impairment. Conversely, there are individuals who exhibit dementia with no gross explanatory neuropathology. In prior studies, synapse loss correlated with cognitive impairment. To understand how synaptic composition changes in relation to neuropathology and cognition, multiplexed liquid chromatography mass-spectrometry was used to quantify enriched synaptic proteins from the parietal association cortex of 100 subjects with contrasting levels of AD pathology and cognitive performance. 123 unique proteins were significantly associated with diagnostic category. Functional analysis showed enrichment of serotonin release and oxidative phosphorylation categories in normal (cognitively unimpaired, low neuropathology) and "resilient" (unimpaired despite AD pathology) individuals. In contrast, frail individuals, (low pathology, impaired cognition) showed a metabolic shift towards glycolysis and increased presence of proteasome subunits.


Assuntos
Envelhecimento/patologia , Envelhecimento/psicologia , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Cognição/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Sinapses/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Cromatografia Líquida , Feminino , Glicólise , Humanos , Vida Independente , Masculino , Espectrometria de Massas , Lobo Parietal/metabolismo , Fosforilação , Serotonina/metabolismo , Sinapses/patologia
18.
Brain Behav ; 11(4): e02048, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33704916

RESUMO

OBJECTIVE: To identify circular RNAs as candidates for differential expression in the middle temporal (MT) cortex in a well-characterized cohort with contrasting Alzheimer disease (AD) pathology and cognition. Top screen candidates were assessed for proof of circularity and then quantified by qPCR in a larger number of samples. METHODS: An initial RNA sequencing screen was performed on n = 20 frozen human tissue samples. Filters were applied to select candidate circular RNAs for further investigation. Frozen human tissue samples were selected for global AD pathology burden and global cognition scores (n = 100). Linear and divergent primers were used to assess circularity using RNaseR digestion. RT-qPCR was performed to quantify relative hsa_circ_0131235 abundance. RESULTS: Eleven circular RNAs were selected for further investigation. Four candidates produced circular RNA primers with appropriate efficiencies for qPCR. RNaseR treatment and analysis by both basic PCR and qPCR confirmed hsa_circ_0131235 circularity. There was a significant main effect of AD pathology on hsa_circ_0131235 expression. CONCLUSIONS: Elevated hsa_circ_0131235 expression in the MT cortex was significantly associated with AD pathology.


Assuntos
Doença de Alzheimer , RNA Circular , Doença de Alzheimer/genética , Estudos de Coortes , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Lobo Temporal
19.
Trials ; 21(1): 1016, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308285

RESUMO

BACKGROUND: The conventional clinical trial design in Alzheimer's disease (AD) and AD-related disorders (ADRDs) is the parallel-group randomized controlled trial. However, in heterogeneous disorders like AD/ADRDs, this design requires large sample sizes to detect meaningful effects in an "average" patient. They are very costly and, despite many attempts, have not yielded new treatments for many years. An alternative, the multi-crossover, randomized control trial (MCRCT) is a design in which each patient serves as their own control across successive, randomized blocks of active treatment and placebo. This design overcomes many limitations of parallel-group trials, yielding an unbiased assessment of treatment effect at the individual level ("N-of-1") regardless of unique patient characteristics. The goal of the present study is to pilot a MCRCT of a potential symptomatic treatment, methylphenidate, for mild-stage AD/ADRDs, testing feasibility and compliance of participants in this design and efficacy of the drug using both standard and novel outcome measures suited for this design. METHODS: Ten participants with mild cognitive impairment or mild-stage dementia due to AD/ADRDs will undergo a 4-week lead-in period followed by three, month-long treatment blocks (2 weeks of treatment with methylphenidate, 2 weeks placebo in random order). This trial will be conducted entirely virtually with an optional in-person screening visit. The primary outcome of interest is feasibility as measured by compliance and retention, with secondary and exploratory outcomes including cognition as measured by neuropsychological assessment at the end of each treatment period and daily brain games played throughout the study, actigraphy, and neuropsychiatric and functional assessments. DISCUSSION: This pilot study will gauge the feasibility of conducting a virtual MCRCT for symptomatic treatment in early AD/ADRD. It will also compare home-based daily brain games with standard neuropsychological measures within a clinical trial for AD/ADRD. Particular attention will be paid to compliance, tolerability of drug and participation, learning effects, trends and stability of daily measures across blocks, medication carryover effects, and correlations between standard and brief daily assessments. These data will provide guidance for more efficient trial design and the use of potentially more robust, ecological outcome measures in AD/ADRD research. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03811847 . Registered on 21 January 2019.


Assuntos
Disfunção Cognitiva , Metilfenidato , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/tratamento farmacológico , Estudos de Viabilidade , Humanos , Metilfenidato/efeitos adversos , Projetos Piloto , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
20.
Front Neurol ; 11: 575953, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041998

RESUMO

Alzheimer's Disease (AD) is associated with neuropathological changes, including aggregation of tau neurofibrillary tangles (NFTs) and amyloid-beta plaques. Mounting evidence indicates that vascular dysfunction also plays a key role in the pathogenesis and progression of AD, in part through endothelial dysfunction. Based on findings in animal models that tau pathology induces vascular abnormalities and cellular senescence, we hypothesized that tau pathology in the human AD brain leads to vascular senescence. To explore this hypothesis, we isolated intact microvessels from the dorsolateral prefrontal cortex (PFC, BA9) from 16 subjects with advanced Braak stages (Braak V/VI, B3) and 12 control subjects (Braak 0/I/II, B1), and quantified expression of 42 genes associated with senescence, cell adhesion, and various endothelial cell functions. Genes associated with endothelial senescence and leukocyte adhesion, including SERPINE1 (PAI-1), CXCL8 (IL8), CXCL1, CXCL2, ICAM-2, and TIE1, were significantly upregulated in B3 microvessels after adjusting for sex and cerebrovascular pathology. In particular, the senescence-associated secretory phenotype genes SERPINE1 and CXCL8 were upregulated by more than 2-fold in B3 microvessels after adjusting for sex, cerebrovascular pathology, and age at death. Protein quantification data from longitudinal plasma samples for a subset of 13 (n = 9 B3, n = 4 B1) subjects showed no significant differences in plasma senescence or adhesion-associated protein levels, suggesting that these changes were not associated with systemic vascular alterations. Future investigations of senescence biomarkers in both the peripheral and cortical vasculature could further elucidate links between tau pathology and vascular changes in human AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA