Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Commun ; 15(1): 4889, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849369

RESUMO

Polymicrobial infection of the airways is a hallmark of obstructive lung diseases such as cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Pulmonary exacerbations (PEx) in these conditions are associated with accelerated lung function decline and higher mortality rates. Understanding PEx ecology is challenged by high inter-patient variability in airway microbial community profiles. We analyze bacterial communities in 880 CF sputum samples collected during an observational prospective cohort study and develop microbiome descriptors to model community reorganization prior to and during 18 PEx. We identify two microbial dysbiosis regimes with opposing ecology and dynamics. Pathogen-governed PEx show hierarchical community reorganization and reduced diversity, whereas anaerobic bloom PEx display stochasticity and increased diversity. A simulation of antimicrobial treatment predicts better efficacy for hierarchically organized communities. This link between PEx, microbiome organization, and treatment success advances the development of personalized clinical management in CF and, potentially, other obstructive lung diseases.


Assuntos
Fibrose Cística , Disbiose , Microbiota , Escarro , Fibrose Cística/microbiologia , Humanos , Masculino , Escarro/microbiologia , Estudos Prospectivos , Feminino , Resultado do Tratamento , Disbiose/microbiologia , Adulto , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Pulmão/microbiologia , Progressão da Doença , Doença Pulmonar Obstrutiva Crônica/microbiologia , Adulto Jovem , Adolescente , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
2.
Res Sq ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562856

RESUMO

Polymicrobial infection of the airways is a hallmark of obstructive lung diseases such as cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Pulmonary exacerbations (PEx) in these conditions are associated with accelerated lung function decline and higher mortality rates. An understanding of the microbial underpinnings of PEx is challenged by high inter-patient variability in airway microbial community profiles. We analyzed bacterial communities in 880 CF sputum samples and developed microbiome descriptors to model community reorganization prior to and during 18 PEx. We identified two microbial dysbiosis regimes with opposing ecology and dynamics. Pathogen-governed PEx showed hierarchical community reorganization and reduced diversity, whereas anaerobic bloom PEx displayed stochasticity and increased diversity. A simulation of antimicrobial treatment predicted better efficacy for hierarchically organized communities. This link between PEx type, microbiome organization, and treatment success advances the development of personalized clinical management in CF and, potentially, other obstructive lung diseases.

3.
Ann Am Thorac Soc ; 21(4): 595-603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37963297

RESUMO

Rationale: Rates of viral respiratory infection (VRI) are similar in people with cystic fibrosis (CF) and the general population; however, the associations between VRI and CF pulmonary exacerbations (PEx) require further elucidation.Objectives: To determine VRI prevalence during CF PEx and evaluate associations between VRI, clinical presentation, and treatment response.Methods: The STOP2 (Standardized Treatment of Pulmonary Exacerbations II) study was a multicenter randomized trial to evaluate different durations of intravenous antibiotic therapy for PEx. In this ancillary study, participant sputum samples from up to three study visits were tested for respiratory viruses using multiplex polymerase chain reactions. Baselines and treatment-associated changes in mean lung function (percent predicted forced expiratory volume in 1 s), respiratory symptoms (Chronic Respiratory Infection Symptom Score), weight, and C-reactive protein were compared as a function of virus detection. Odds of PEx retreatment within 30 days and future PEx hazard were modeled by logistic and Cox proportional hazards regression, respectively.Results: A total of 1,254 sputum samples from 621 study participants were analyzed. One or more respiratory viruses were detected in sputum samples from 245 participants (39.5%). Virus-positive participants were more likely to be receiving CF transmembrane conductance regulator modulator therapy (45% vs. 34%) and/or chronic azithromycin therapy (54% vs. 44%) and more likely to have received treatment for nontuberculous Mycobacterium infection in the preceding 2 years (7% vs. 3%). At study visit 1, virus-positive participants were more symptomatic (mean Chronic Respiratory Infection Symptom Score, 53.8 vs. 51.1), had evidence of greater systemic inflammation (log10 C-reactive protein concentration, 1.32 log10 mg/L vs. 1.23 log10 mg/L), and had a greater drop in percent predicted forced expiratory volume in 1 second from the prior 6-month baseline (5.8 vs. 3.6). Virus positivity was associated with reduced risk of future PEx (hazard ratio, 0.82; 95% confidence interval, 0.69-0.99; P = 0.034) and longer median time to next PEx (255 d vs. 172 d; P = 0.021) compared with virus negativity.Conclusions: More than one-third of STOP2 participants treated for a PEx had a positive test result for a respiratory virus with more symptomatic initial presentation compared with virus-negative participants, but favorable long-term outcomes. More refined phenotyping of PEx, taking VRIs into account, may aid in optimizing personalized management of PEx.Clinical trial registered with www.clinicaltrials.gov (NCT02781610).


Assuntos
Fibrose Cística , Infecções Respiratórias , Viroses , Vírus , Humanos , Fibrose Cística/complicações , Fibrose Cística/epidemiologia , Fibrose Cística/diagnóstico , Proteína C-Reativa , Prevalência , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/diagnóstico , Viroses/complicações , Viroses/epidemiologia , Viroses/diagnóstico , Antibacterianos/uso terapêutico
4.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546739

RESUMO

Polymicrobial infection of the airways is a hallmark of obstructive lung diseases such as cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease (COPD). Intermittent pulmonary exacerbations (PEx) in these conditions are associated with lung function decline and higher mortality rates. An understanding of the microbial underpinnings of PEx is challenged by high inter-patient variability in airway microbial community profiles. We analyzed 880 near-daily CF sputum samples and developed non-standard microbiome descriptors to model community reorganization prior and during 18 PEx. We identified two communal microbial regimes with opposing ecology and dynamics. Whereas pathogen-governed dysbiosis showed hierarchical community organization and reduced diversity, anaerobic bloom dysbiosis displayed stochasticity and increased diversity. Microbiome organization modulated the relevance of pathogens and a simulation of antimicrobial treatment predicted better efficacy for hierarchically organized microbiota. This causal link between PEx, microbiome organization, and treatment success advances the development of personalized dysbiosis management in CF and, potentially, other obstructive lung diseases.

5.
J Cyst Fibros ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244842

RESUMO

BACKGROUND: Home spirometry is increasingly used to monitor lung function in people with cystic fibrosis (pwCF). Although decreases in lung function in the setting of increased respiratory symptoms are consistent with a pulmonary exacerbation (PEx), the interpretation of home spirometry during asymptomatic periods of baseline health is unclear. The aims of this study were to determine the variation in home spirometry in pwCF during asymptomatic periods of baseline health and to identify associations between this variation and PEx. METHODS: Near-daily home spirometry measurements were obtained from a cohort of pwCF enrolled in a long-term study of the airway microbiome. Associations between the degree of variation in home spirometry and the time to next PEx were evaluated. RESULTS: Thirteen subjects (mean age of 29 years and mean percent predicted forced expiratory volume in one second [ppFEV1] of 60) provided a median of 204 spirometry readings taken during 40 periods of baseline health. The mean week-to-week within-subject level of variation in ppFEV1 was 15.2 ± 6.2%. The degree of variation in ppFEV1 during baseline health was not associated with time to PEx. CONCLUSIONS: Variation in ppFEV1 measured with near-daily home spirometry in pwCF during periods of baseline health exceeded the variation in ppFEV1 expected in clinic spirometry (based on ATS guidelines). The degree of variation in ppFEV1 during baseline health was not associated with time to PEx. These data are relevant for guiding interpretation of home spirometry.

6.
J Cyst Fibros ; 22(4): 623-629, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36628831

RESUMO

BACKGROUND: The progression of lung disease in people with cystic fibrosis (pwCF) has been associated with a decrease in the diversity of airway bacterial communities. How often low diversity communities occur in advanced CF lung disease and how they may be associated with clinical outcomes is not clear, however. METHODS: We sequenced a region of the bacterial 16S ribosomal RNA gene to characterize bacterial communities in sputum from 190 pwCF with advanced lung disease (FEV1≤40% predicted), with particular attention to the prevalence and relative abundance of dominant genera. We evaluated relationships between community diversity and clinical outcomes. RESULTS: Although most of the 190 pwCF with advanced lung disease had airway bacterial communities characterized by low diversity with a dominant genus, a considerable minority (40%) did not. The absence of a dominant genus, presence of methicillin-susceptible Staphylococcus aureus, and greater bacterial richness positively correlated with lung function. Higher relative abundance of the dominant genus and greater antimicrobial use negatively correlated with lung function. PwCF with a low diversity community and dominant genus had reduced lung transplant-free survival compared to those without (median survival of 1.6 vs 2.9 years). CONCLUSIONS: A considerable proportion of pwCF with advanced lung disease do not have airway bacterial communities characterized by low diversity and a dominant genus and these individuals had better survival. An understanding of the antecedents of low diversity airway communities- and the impact these may have on lung disease trajectory - may provide avenues for improved management strategies.


Assuntos
Fibrose Cística , Transplante de Pulmão , Microbiota , Humanos , Fibrose Cística/complicações , Fibrose Cística/epidemiologia , Fibrose Cística/microbiologia , Pulmão , Escarro/microbiologia , Bactérias/genética , RNA Ribossômico 16S/genética
7.
J Cyst Fibros ; 21(5): 766-768, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35667975

RESUMO

Chronic polymicrobial airway infections are a hallmark of cystic fibrosis (CF) lung disease. Antibiotic therapy is a primary treatment of CF pulmonary exacerbations (PEx); however, the impact of episodic antibiotic treatment on airway bacterial communities has not been well described. We analyzed sputum samples from adults with CF obtained immediately before and during antibiotic treatment of PEx. Sequencing of the V4 region of the bacterial 16S ribosomal RNA gene was used to assess changes in bacterial community structure during antibiotic treatment. The peak impact of antibiotic treatment was observed by day four or five of treatment. These findings advance our understanding of bacterial community dynamics during antibiotic treatment of PEx and complement recent and ongoing studies evaluating the optimal duration of antibiotic therapy for PEx.


Assuntos
Fibrose Cística , Adulto , Antibacterianos/uso terapêutico , Bactérias , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Humanos , Pulmão , RNA Ribossômico 16S , Escarro/microbiologia
8.
ISME J ; 16(4): 905-914, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34689185

RESUMO

Bacterial infection and inflammation of the airways are the leading causes of morbidity and mortality in persons with cystic fibrosis (CF). The ecology of the bacterial communities inhabiting CF airways is poorly understood, especially with respect to how community structure, dynamics, and microbial metabolic activity relate to clinical outcomes. In this study, the bacterial communities in 818 sputum samples from 109 persons with CF were analyzed by sequencing bacterial 16S rRNA gene amplicons. We identified eight alternative community types (pulmotypes) by using a Dirichlet multinomial mixture model and studied their temporal dynamics in the cohort. Across patients, the pulmotypes displayed chronological patterns in the transition among each other. Furthermore, significant correlations between pulmotypes and patient clinical status were detected by using multinomial mixed effects models, principal components regression, and statistical testing. Constructing pulmotype-specific metabolic activity profiles, we found that pulmotype microbiota drive distinct community functions including mucus degradation or increased acid production. These results indicate that pulmotypes are the result of ordered, underlying drivers such as predominant metabolism, ecological competition, and niche construction and can form the basis for quantitative, predictive models supporting clinical treatment decisions.


Assuntos
Fibrose Cística , Microbiota , Bactérias/genética , Fibrose Cística/microbiologia , Humanos , Pulmão/microbiologia , Microbiota/genética , RNA Ribossômico 16S/genética , Escarro/microbiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-33139284

RESUMO

Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For ∼37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.


Assuntos
Fibrose Cística , Antibacterianos/uso terapêutico , Cromatografia Líquida , Fibrose Cística/tratamento farmacológico , Humanos , Espectrometria de Massas , Escarro
10.
mSystems ; 5(4)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636336

RESUMO

Culture-independent studies of the cystic fibrosis (CF) airway microbiome typically rely on expectorated sputum to assess the microbial makeup of lower airways. These studies have revealed rich bacterial communities. There is often considerable overlap between taxa observed in sputum and those observed in saliva, raising questions about the reliability of expectorated sputum as a sample representing lower airway microbiota. These concerns prompted us to compare pairs of sputum and saliva samples from 10 persons with CF. Using 16S rRNA gene sequencing and droplet digital PCR (ddPCR), we analyzed 37 pairs of sputum and saliva samples, each collected from the same person on the same day. We developed an in silico postsequencing decontamination procedure to remove from sputum the fraction of DNA reads estimated to have been contributed by saliva during expectoration. We demonstrate that while there was often sizeable overlap in community membership between sample types, expectorated sputum typically contains a higher bacterial load and a less diverse community compared to saliva. The differences in diversity between sputum and saliva were more pronounced in advanced disease stage, owing to increased relative abundance of the dominant taxa in sputum. Our effort to model saliva contamination of sputum in silico revealed generally minor effects on community structure after removal of contaminating reads. Despite considerable overlap in taxa observed between expectorated sputum and saliva samples, the impact of saliva contamination on measures of lower airway bacterial community composition in CF using expectorated sputum appears to be minimal.IMPORTANCE Cystic fibrosis is an inherited disease characterized by chronic respiratory tract infection and progressive lung disease. Studies of cystic fibrosis lung microbiology often rely on expectorated sputum to reflect the microbiota present in the lower airways. Passage of sputum through the oropharynx during collection, however, contributes microbes present in saliva to the sample, which could confound interpretation of results. Using culture-independent DNA sequencing-based analyses, we characterized the bacterial communities in pairs of expectorated sputum and saliva samples to generate a model for "decontaminating" sputum in silico Our results demonstrate that salivary contamination of expectorated sputum does not have a large effect on most sputum samples and that observations of high bacterial diversity likely accurately reflect taxa present in cystic fibrosis lower airways.

11.
Ann Am Thorac Soc ; 16(12): 1534-1542, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31415187

RESUMO

Rationale: Differences in cystic fibrosis (CF) airway microbiota between periods of clinical stability and exacerbation of respiratory symptoms have been investigated in efforts to better understand microbial triggers of CF exacerbations. Prior studies have often relied on a single sample or a limited number of samples to represent airway microbiota. However, the variability in airway microbiota during periods of clinical stability is not well known.Objectives: To determine the temporal variability of measures of airway microbiota during periods of clinical stability, and to identify factors associated with this variability.Methods: Sputum samples (N = 527), obtained daily from six adults with CF during 10 periods of clinical stability, underwent sequencing of the V4 region of the bacterial 16S ribosomal RNA gene. The variability in airway microbiota among samples within each period of clinical stability was calculated as the average of the Bray-Curtis similarity measures of each sample to every other sample within the same period. Outlier samples were defined as samples outside 1.5 times the interquartile range within a baseline period with respect to the average Bray-Curtis similarity. Total bacterial load was measured with droplet digital polymerase chain reaction.Results: The variation in Bray-Curtis similarity and total bacterial load among samples within the same baseline period was greater than the variation observed in technical replicate control samples. Overall, 6% of samples were identified as outliers. Within baseline periods, changes in bacterial community structure occurred coincident with changes in maintenance antibiotics (P < 0.05, analysis of molecular variance). Within subjects, bacterial community structure changed between baseline periods (P < 0.01, analysis of molecular variance). Sample-to-sample similarity within baseline periods was greater with fewer interval days between sampling.Conclusions: During periods of clinical stability, airway bacterial community structure and bacterial load vary among daily sputum samples from adults with CF. This day-to-day variation has bearing on study design and interpretation of results, particularly in analyses that rely on single samples to represent periods of interest (e.g., clinical stability vs. pulmonary exacerbation). These data also emphasize the importance of accounting for maintenance antibiotic use and granularity of sample collection in studies designed to assess the dynamics of CF airway microbiota relative to changes in clinical state.


Assuntos
Bactérias/isolamento & purificação , Fibrose Cística/microbiologia , Microbiota/efeitos dos fármacos , Sistema Respiratório/microbiologia , Adulto , Antibacterianos/uso terapêutico , Carga Bacteriana , Fibrose Cística/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Sistema Respiratório/efeitos dos fármacos , Escarro/microbiologia
12.
PLoS One ; 13(3): e0194060, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29522532

RESUMO

Bacteria that infect the airways of persons with cystic fibrosis (CF) include a group of well-described opportunistic pathogens as well as numerous, mainly obligate or facultative anaerobic species typically not reported by standard sputum culture. We sequenced the V3-V5 hypervariable region of the bacterial 16S rRNA gene in DNA derived from 631 sputum specimens collected from 111 CF patients over 10 years. We describe fluctuations in the relative abundances of typical CF pathogens, as well as anaerobic species, in relation to changes in patients' clinical state and lung disease stage. Both bacterial community diversity and the relative abundance of anaerobes increased during exacerbation of symptoms (prior to antibiotic treatment), although this trend was not observed uniformly across disease stages. Community diversity and the relative abundance of anaerobic species decreased during antibiotic treatment. These results support current hypotheses regarding the role of anaerobes in CF pulmonary exacerbations and lung disease progression.


Assuntos
Bactérias/isolamento & purificação , Fibrose Cística/microbiologia , Microbiota , Escarro/microbiologia , Adolescente , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Criança , Progressão da Doença , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Ribotipagem , Adulto Jovem
13.
mSystems ; 2(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29202048

RESUMO

Metabolites of human or microbial origin have the potential to be important biomarkers of the disease state in cystic fibrosis (CF). Clinical sample collection and storage conditions may impact metabolite abundances with clinical relevance. We measured the change in metabolite composition based on untargeted gas chromatography-mass spectrometry (GC-MS) when CF sputum samples were stored at 4°C, -20°C, or -80°C with one or two freeze-thaw cycles. Daily measurements were taken for 1 week and then weekly for 4 weeks (4°C) and 8 weeks (-20°C). The metabolites in samples stored at -20°C maintained abundances similar to those found at-80°C over the course of 8 weeks (average change in Bray-Curtis distance, 0.06 ± 0.04) and were also stable after one or two freeze-thaw cycles. However, the metabolite profiles of samples stored at 4°C shifted after 1 day and continued to change over the course of 4 weeks (average change in Bray-Curtis distance, 0.31 ± 0.12). The abundances of several amino acids and other metabolites increased with time of storage at 4°C but remained constant at -20°C. Storage temperature was a significant factor driving the metabolite composition (permutational multivariate analysis of variance: r2 = 0.32 to 0.49, P < 0.001). CF sputum samples stored at -20°C at the time of sampling maintain a relatively stable untargeted GC-MS profile. Samples should be frozen on the day of collection, as more than 1 day at 4°C impacts the global composition of the metabolites in the sample. IMPORTANCE Metabolomics has great potential for uncovering biomarkers of the disease state in CF and many other contexts. However, sample storage timing and temperature may alter the abundance of clinically relevant metabolites. To assess whether existing samples are stable and to direct future study design, we conducted untargeted GC-MS metabolomic analysis of CF sputum samples after one or two freeze-thaw cycles and storage at 4°C and -20°C for 4 to 8 weeks. Overall, storage at -20°C and freeze-thaw cycles had little impact on metabolite profiles; however, storage at 4°C shifted metabolite abundances significantly. GC-MS profiling will aid in our understanding of the CF lung, but care should be taken in studies using sputum samples to ensure that samples are properly stored.

14.
Bioorg Med Chem Lett ; 27(16): 3647-3652, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28720505

RESUMO

Bispecific antibodies (BsAbs) are designed to engage two antigens simultaneously, thus, effectively expanding the ability of antibody-based therapeutics to target multiple pathways within the same cell, engage two separate soluble antigens, bind the same antigen with distinct paratopes, or crosslink two different cell types. Many recombinant BsAb formats have emerged, however, expression and purification of such constructs can often be challenging. To this end, we have developed a chemical strategy for generating BsAbs using native IgG2 architecture. Full-length antibodies can be conjugated via disulfide bridging with linkers bearing orthogonal groups to produce BsAbs. We report that an αHER2/EGFR BsAb was successfully generated by this approach and retained the ability to bind both antigens with no significant loss of potency.


Assuntos
Anticorpos Biespecíficos/química , Dissulfetos/química , Imunoglobulina G/imunologia , Anticorpos Biespecíficos/imunologia , Reações Antígeno-Anticorpo , Sítios de Ligação de Anticorpos , Linhagem Celular Tumoral , Química Click , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Células MCF-7 , Microscopia de Fluorescência , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo
15.
Appl Environ Microbiol ; 83(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28258146

RESUMO

The Burkholderia cepacia complex (Bcc) consists of 20 closely related Gram-negative bacterial species that are significant pathogens for persons with cystic fibrosis (CF). Some Bcc strains are highly transmissible and resistant to multiple antibiotics, making infection difficult to treat. A tailocin (phage tail-like bacteriocin), designated BceTMilo, with a broad host range against members of the Bcc, was identified in B. cenocepacia strain BC0425. Sixty-eight percent of Bcc representing 10 species and 90% of non-Bcc Burkholderia strains tested were sensitive to BceTMilo. BceTMilo also showed killing activity against Pseudomonas aeruginosa PAO1 and derivatives. Liquid chromatography-mass spectrometry analysis of the major BceTMilo proteins was used to identify a 23-kb tailocin locus in a draft BC0425 genome. The BceTMilo locus was syntenic and highly similar to a 24.6-kb region on chromosome 1 of B. cenocepacia J2315 (BCAL0081 to BCAL0107). A close relationship and synteny were observed between BceTMilo and Burkholderia phage KL3 and, by extension, with paradigm temperate myophage P2. Deletion mutants in the gene cluster encoding enzymes for biosynthesis of lipopolysaccharide (LPS) in the indicator strain B. cenocepacia K56-2 conferred resistance to BceTMilo. Analysis of the defined mutants in LPS biosynthetic genes indicated that an α-d-glucose residue in the core oligosaccharide is the receptor for BceTMilo.IMPORTANCE BceTMilo, presented in this study, is a broad-host-range tailocin active against Burkholderia spp. As such, BceTMilo and related or modified tailocins have potential as bactericidal therapeutic agents against plant- and human-pathogenic Burkholderia.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Burkholderia cenocepacia/química , Complexo Burkholderia cepacia/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Complexo Burkholderia cepacia/crescimento & desenvolvimento , Genoma Bacteriano , Genoma Viral , Especificidade de Hospedeiro , Humanos , Espectrometria de Massas , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento
16.
PLoS One ; 11(4): e0153876, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27093603

RESUMO

Respiratory tract infections with nontuberculous mycobacteria (NTM) are increasing in prevalence and are a significant cause of lung function decline in individuals with cystic fibrosis (CF). NTM have been detected in culture-independent analyses of CF airway microbiota at lower rates than would be expected based on published prevalence data, likely due to poor lysing of the NTM cell wall during DNA extraction. We compared a standard bacterial lysis protocol with a modified method by measuring NTM DNA extraction by qPCR and NTM detection with bacterial 16S rRNA gene sequencing. The modified method improved NTM DNA recovery from spiked CF sputum samples by a mean of 0.53 log10 copies/mL for M. abscessus complex and by a mean of 0.43 log10 copies/mL for M. avium complex as measured by qPCR targeting the atpE gene. The modified method also improved DNA sequence based NTM detection in NTM culture-positive CF sputum and bronchoalveolar lavage samples; however, both qPCR and 16S rRNA gene sequencing remained less sensitive than culture for NTM detection. We highlight the limitations of culture-independent identification of NTM from CF respiratory samples, and illustrate how alterations in the bacterial lysis and DNA extraction process can be employed to improve NTM detection with both qPCR and 16S rRNA gene sequencing.


Assuntos
Fibrose Cística/microbiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/genética , Infecções Respiratórias/microbiologia , Escarro/microbiologia , DNA Bacteriano/genética , Humanos , Prevalência , RNA Ribossômico 16S/genética
17.
J Clin Microbiol ; 54(3): 613-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26699705

RESUMO

Cystic fibrosis (CF) is characterized by chronic infection and inflammation of the airways. In vitro culture of select bacterial species from respiratory specimens has been used to guide antimicrobial therapy in CF for the past few decades. More recently, DNA sequence-based, culture-independent approaches have been used to assess CF airway microbiology, although the role that these methods will (or should) have in routine microbiologic analysis of CF respiratory specimens is unclear. We performed DNA sequence analyses to detect bacterial species in 945 CF sputum samples that had been previously analyzed by selective CF culture. We determined the concordance of results based on culture and sequence analysis, highlighting the comparison of the results for the most prevalent genera. Although overall prevalence rates were comparable between the two methods, results varied by genus. While sequence analysis was more likely to detect Achromobacter, Stenotrophomonas, and Burkholderia, it was less likely to detect Staphylococcus. Streptococcus spp. were rarely reported in culture results but were the most frequently detected species by sequence analysis. A variety of obligate and facultative anaerobic species, not reported by culture, was also detected with high prevalence by sequence analysis. Sequence analysis indicated that in a considerable proportion of samples, taxa not reported by selective culture constituted a relatively high proportion of the total bacterial load, suggesting that routine CF culture may underrepresent significant segments of the bacterial communities inhabiting CF airways.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Técnicas Bacteriológicas/métodos , Fibrose Cística/complicações , Técnicas de Diagnóstico Molecular/métodos , Infecções Respiratórias/microbiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto Jovem
18.
Microbiome ; 3: 12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25834733

RESUMO

BACKGROUND: Recent work indicates that the airways of persons with cystic fibrosis (CF) typically harbor complex bacterial communities. However, the day-to-day stability of these communities is unknown. Further, airway community dynamics during the days corresponding to the onset of symptoms of respiratory exacerbation have not been studied. RESULTS: Using 16S rRNA amplicon sequencing of 95 daily sputum specimens collected from four adults with CF, we observed varying degrees of day-to-day stability in airway bacterial community structures during periods of clinical stability. Differences were observed between study subjects with respect to the degree of community changes at the onset of exacerbation. Decreases in the relative abundance of dominant taxa were observed in three subjects at exacerbation. We observed no relationship between total bacterial load and clinical status and detected no viruses by multiplex PCR. CONCLUSION: CF airway microbial communities are relatively stable during periods of clinical stability. Changes in microbial community structure are associated with some, but not all, pulmonary exacerbations, supporting previous observations suggesting that distinct types of exacerbations occur in CF. Decreased abundance of species that are dominant at baseline suggests a role for less abundant taxa in some exacerbations. Daily sampling revealed patterns of change in microbial community structures that may prove useful in the prediction and management of CF pulmonary exacerbations.

19.
J Cyst Fibros ; 14(4): 468-73, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25725986

RESUMO

BACKGROUND: Although recent studies have begun to elucidate how airway microbial community structure relates to lung disease in cystic fibrosis (CF), microbial community activity and the host's response to changes in this activity are poorly understood. Metabolomic profiling provides a means to investigate microbial activity and human cell activity within diseased airways. However, variables in sample storage and shipping likely affect downstream analyses and standards for sample handling are lacking. METHODS: We assessed the impact of sample storage conditions on liquid chromatography mass spectrometry analysis of CF sputum samples. RESULTS: Significant changes in global metabolomic profiles occurred in samples stored at room temperature or at 4°C for longer than one day. Untargeted metabolomic profiles were stable in sputum samples stored at -20°C or -80°C for at least 28 days. Quorum sensing molecules and phenazines, both considered important to the in vivo activity of Pseudomonas during airway infection, were detected after sample storage at room temperature for five days. CONCLUSIONS: Sputum samples can be stored at -20°C or -80°C for weeks with minimal effect on global metabolomic profiles. This observation provides guidance in designing metabolomic studies that have the potential to deepen our understanding of how airway microbial communities impact lung disease progression in CF.


Assuntos
Criopreservação/métodos , Fibrose Cística/metabolismo , Manejo de Espécimes/métodos , Escarro/metabolismo , Bancos de Espécimes Biológicos , Fibrose Cística/microbiologia , Humanos , Metaboloma , Microbiota , Escarro/microbiologia , Temperatura
20.
Biochemistry ; 53(51): 8031-42, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25369561

RESUMO

The ubiquitin-proteasome system (UPS) is highly complex and entails the concerted actions of many enzymes that function to ubiquitinate proteins targeted to the proteasome as well as enzymes that remove and recycle ubiquitin for additional rounds of proteolysis. Ubiquitin C-terminal hydrolase-L3 (UCH-L3) is a human cytosolic deubiquitinase whose precise biological function is not known. It is believed to hydrolyze small peptides or chemical adducts from the C-terminus of ubiquitin that may be remnant from proteasomal processing. In addition, UCH-L3 is a highly effective biotechnological tool that is used to produce small or unstable peptides/proteins recalcitrant to production in Escherichia coli expression systems. Previous research, which explored the substrate selectivity of UCH-L3, demonstrated a substrate size limitation for proteins/peptides expressed as α-linked C-terminal fusions to ubiquitin and also suggested that an additional substrate property may affect UCH-L3 hydrolysis [ Larsen , C. N. et al. (1998) Biochemistry 37 , 3358 - 3368 ]. Using a series of engineered protein substrates, which are similar in size yet differ in secondary structure, we demonstrate that thermal stability is a key factor that significantly affects UCH-L3 hydrolysis. In addition, we show that the thermal stabilities of the engineered substrates are not altered by fusion to ubiquitin and offer a possible mechanism as to how ubiquitin affects the structural and unfolding properties of natural in vivo targets.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Cisteína Endopeptidases/genética , Humanos , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Ubiquitina/genética , Ubiquitina Tiolesterase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA