Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Commun ; 15(1): 872, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287014

RESUMO

Batch effects in single-cell RNA-seq data pose a significant challenge for comparative analyses across samples, individuals, and conditions. Although batch effect correction methods are routinely applied, data integration often leads to overcorrection and can result in the loss of biological variability. In this work we present STACAS, a batch correction method for scRNA-seq that leverages prior knowledge on cell types to preserve biological variability upon integration. Through an open-source benchmark, we show that semi-supervised STACAS outperforms state-of-the-art unsupervised methods, as well as supervised methods such as scANVI and scGen. STACAS scales well to large datasets and is robust to incomplete and imprecise input cell type labels, which are commonly encountered in real-life integration tasks. We argue that the incorporation of prior cell type information should be a common practice in single-cell data integration, and we provide a flexible framework for semi-supervised batch effect correction.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
2.
Nat Immunol ; 24(10): 1645-1653, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37709986

RESUMO

Persistent exposure to antigen during chronic infection or cancer renders T cells dysfunctional. The molecular mechanisms regulating this state of exhaustion are thought to be common in infection and cancer, despite obvious differences in their microenvironments. Here we found that NFAT5, an NFAT family transcription factor that lacks an AP-1 docking site, was highly expressed in exhausted CD8+ T cells in the context of chronic infections and tumors but was selectively required in tumor-induced CD8+ T cell exhaustion. Overexpression of NFAT5 in CD8+ T cells reduced tumor control, while deletion of NFAT5 improved tumor control by promoting the accumulation of tumor-specific CD8+ T cells that had reduced expression of the exhaustion-associated proteins TOX and PD-1 and produced more cytokines, such as IFNÉ£ and TNF, than cells with wild-type levels of NFAT5, specifically in the precursor exhausted PD-1+TCF1+TIM-3-CD8+ T cell population. NFAT5 did not promote T cell exhaustion during chronic infection with clone 13 of lymphocytic choriomeningitis virus. Expression of NFAT5 was induced by TCR triggering, but its transcriptional activity was specific to the tumor microenvironment and required hyperosmolarity. Thus, NFAT5 promoted the exhaustion of CD8+ T cells in a tumor-selective fashion.


Assuntos
Coriomeningite Linfocítica , Neoplasias , Humanos , Fatores de Transcrição/metabolismo , Linfócitos T CD8-Positivos , Exaustão das Células T , Infecção Persistente , Microambiente Tumoral , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Vírus da Coriomeningite Linfocítica , Neoplasias/metabolismo
3.
Bio Protoc ; 13(16): e4735, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37638293

RESUMO

T cells are endowed with T-cell antigen receptors (TCR) that give them the capacity to recognize specific antigens and mount antigen-specific adaptive immune responses. Because TCR sequences are distinct in each naïve T cell, they serve as molecular barcodes to track T cells with clonal relatedness and shared antigen specificity through proliferation, differentiation, and migration. Single-cell RNA sequencing provides coupled information of TCR sequence and transcriptional state in individual cells, enabling T-cell clonotype-specific analyses. In this protocol, we outline a computational workflow to perform T-cell states and clonal analysis from scRNA-seq data based on the R packages Seurat, ProjecTILs, and scRepertoire. Given a scRNA-seq T-cell dataset with TCR sequence information, cell states are automatically annotated by reference projection using the ProjecTILs method. TCR information is used to track individual clonotypes, assess their clonal expansion, proliferation rates, bias towards specific differentiation states, and the clonal overlap between T-cell subtypes. We provide fully reproducible R code to conduct these analyses and generate useful visualizations that can be adapted for the needs of the protocol user. Key features Computational analysis of paired scRNA-seq and scTCR-seq data Characterizing T-cell functional state by reference-based analysis using ProjecTILs Exploring T-cell clonal structure using scRepertoire Linking T-cell clonality to transcriptomic state to study relationships between clonal expansion and functional phenotype Graphical overview.

4.
Cell Rep Med ; 4(8): 101154, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586318

RESUMO

Strategies to increase intratumoral concentrations of an anticancer agent are desirable to optimize its therapeutic potential when said agent is efficacious primarily within a tumor but also have significant systemic side effects. Here, we generate a bifunctional protein by fusing interleukin-10 (IL-10) to a colony-stimulating factor-1 receptor (CSF-1R)-blocking antibody. The fusion protein demonstrates significant antitumor activity in multiple cancer models, especially head and neck cancer. Moreover, this bifunctional protein not only leads to the anticipated reduction in tumor-associated macrophages but also triggers proliferation, activation, and metabolic reprogramming of CD8+ T cells. Furthermore, it extends the clonotype diversity of tumor-infiltrated T cells and shifts the tumor microenvironment (TME) to an immune-active state. This study suggests an efficient strategy for designing immunotherapeutic agents by fusing a potent immunostimulatory molecule to an antibody targeting TME-enriched factors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Interleucina-10/metabolismo , Neoplasias/patologia , Antineoplásicos/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fator Estimulador de Colônias/metabolismo , Microambiente Tumoral
5.
Nat Immunol ; 24(5): 869-883, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081150

RESUMO

To date, no immunotherapy approaches have managed to fully overcome T-cell exhaustion, which remains a mandatory fate for chronically activated effector cells and a major therapeutic challenge. Understanding how to reprogram CD8+ tumor-infiltrating lymphocytes away from exhausted effector states remains an elusive goal. Our work provides evidence that orthogonal gene engineering of T cells to secrete an interleukin (IL)-2 variant binding the IL-2Rßγ receptor and the alarmin IL-33 reprogrammed adoptively transferred T cells to acquire a novel, synthetic effector state, which deviated from canonical exhaustion and displayed superior effector functions. These cells successfully overcame homeostatic barriers in the host and led-in the absence of lymphodepletion or exogenous cytokine support-to high levels of engraftment and tumor regression. Our work unlocks a new opportunity of rationally engineering synthetic CD8+ T-cell states endowed with the ability to avoid exhaustion and control advanced solid tumors.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia Adotiva , Interleucina-2 , Neoplasias Experimentais , Linfócitos T CD8-Positivos/imunologia , Exaustão das Células T , Linfócitos do Interstício Tumoral/imunologia , Interleucina-2/farmacologia , Interleucina-33 , Engenharia de Proteínas , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/metabolismo
6.
BMC Bioinformatics ; 23(1): 336, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963997

RESUMO

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) technologies offer unique opportunities for exploring heterogeneous cell populations. However, in-depth single-cell transcriptomic characterization of complex tissues often requires profiling tens to hundreds of thousands of cells. Such large numbers of cells represent an important hurdle for downstream analyses, interpretation and visualization. RESULTS: We develop a framework called SuperCell to merge highly similar cells into metacells and perform standard scRNA-seq data analyses at the metacell level. Our systematic benchmarking demonstrates that metacells not only preserve but often improve the results of downstream analyses including visualization, clustering, differential expression, cell type annotation, gene correlation, imputation, RNA velocity and data integration. By capitalizing on the redundancy inherent to scRNA-seq data, metacells significantly facilitate and accelerate the construction and interpretation of single-cell atlases, as demonstrated by the integration of 1.46 million cells from COVID-19 patients in less than two hours on a standard desktop. CONCLUSIONS: SuperCell is a framework to build and analyze metacells in a way that efficiently preserves the results of scRNA-seq data analyses while significantly accelerating and facilitating them.


Assuntos
COVID-19 , Transcriptoma , Análise por Conglomerados , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
7.
Cell ; 185(14): 2591-2608.e30, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803246

RESUMO

Melanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways. Key observations were validated in independent patient cohorts, patient-derived MBM/ECM xenograft models, RNA/ATAC-seq, proteomics, and multiplexed imaging. Integrated spatial analyses revealed distinct geography of putative cancer immune evasion and evidence for more abundant intra-tumoral B to plasma cell differentiation in lymphoid aggregates in MBM. MBM harbored larger fractions of monocyte-derived macrophages and dysfunctional TOX+CD8+ T cells with distinct expression of immune checkpoints. This work provides comprehensive insights into MBM biology and serves as a foundational resource for further discovery and therapeutic exploration.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Linfócitos T CD8-Positivos/patologia , Ecossistema , Humanos , RNA-Seq
8.
Elife ; 112022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35829695

RESUMO

CD4+ T cells are critical orchestrators of immune responses against a large variety of pathogens, including viruses. While multiple CD4+ T cell subtypes and their key transcriptional regulators have been identified, there is a lack of consistent definition for CD4+ T cell transcriptional states. In addition, the progressive changes affecting CD4+ T cell subtypes during and after immune responses remain poorly defined. Using single-cell transcriptomics, we characterized the diversity of CD4+ T cells responding to self-resolving and chronic viral infections in mice. We built a comprehensive map of virus-specific CD4+ T cells and their evolution over time, and identified six major cell states consistently observed in acute and chronic infections. During the course of acute infections, T cell composition progressively changed from effector to memory states, with subtype-specific gene modules and kinetics. Conversely, in persistent infections T cells acquired distinct, chronicity-associated programs. By single-cell T cell receptor (TCR) analysis, we characterized the clonal structure of virus-specific CD4+ T cells across individuals. Virus-specific CD4+ T cell responses were essentially private across individuals and most T cells differentiated into both Tfh and Th1 subtypes irrespective of their TCR. Finally, we showed that our CD4+ T cell map can be used as a reference to accurately interpret cell states in external single-cell datasets across tissues and disease models. Overall, this study describes a previously unappreciated level of adaptation of the transcriptional states of CD4+ T cells responding to viruses and provides a new computational resource for CD4+ T cell analysis.


Assuntos
Linfócitos T , Viroses , Animais , Linfócitos T CD4-Positivos , Camundongos , Receptores de Antígenos de Linfócitos T/genética
9.
Bioinformatics ; 38(9): 2642-2644, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35258562

RESUMO

SUMMARY: A common bioinformatics task in single-cell data analysis is to purify a cell type or cell population of interest from heterogeneous datasets. Here, we present scGate, an algorithm that automatizes marker-based purification of specific cell populations, without requiring training data or reference gene expression profiles. scGate purifies a cell population of interest using a set of markers organized in a hierarchical structure, akin to gating strategies employed in flow cytometry. scGate outperforms state-of-the-art single-cell classifiers and it can be applied to multiple modalities of single-cell data (e.g. RNA-seq, ATAC-seq, CITE-seq). scGate is implemented as an R package and integrated with the Seurat framework, providing an intuitive tool to isolate cell populations of interest from heterogeneous single-cell datasets. AVAILABILITY AND IMPLEMENTATION: scGate is available as an R package at https://github.com/carmonalab/scGate (https://doi.org/10.5281/zenodo.6202614). Several reproducible workflows describing the main functions and usage of the package on different single-cell modalities, as well as the code to reproduce the benchmark, can be found at https://github.com/carmonalab/scGate.demo (https://doi.org/10.5281/zenodo.6202585) and https://github.com/carmonalab/scGate.benchmark. Test data are available at https://doi.org/10.6084/m9.figshare.16826071. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Célula Única , Software , RNA-Seq , Sequenciamento de Cromatina por Imunoprecipitação , Sequenciamento do Exoma
10.
Biochem J ; 479(4): 561-580, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35136964

RESUMO

Adenosine-to-inosine conversion at position 34 (A34-to-I) of certain tRNAs is essential for expanding their decoding capacity. This reaction is catalyzed by the adenosine deaminase acting on tRNA (ADAT) complex, which in Eukarya is formed by two subunits: ADAT2 and ADAT3. We herein identified and thoroughly characterized the ADAT molecules from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas Disease. TcADAT2 and TcADAT3 spontaneously form a catalytically active complex, as shown by expression in engineered bacteria and/or by the increased ex vivo tRNA A-to-I deamination activity of T. cruzi epimastigotes overexpressing TcADAT subunits. Importantly, enhanced TcADAT2/3 activity in transgenic parasites caused a shift in their in vivo tRNAThrAGU signature, which correlated with significant changes in the expression of the Thr-rich TcSMUG proteins. To our knowledge, this is the first evidence indicating that T. cruzi tRNA editing can be modulated in vivo, in turn post-transcriptionally changing the expression of specific genes. Our findings suggest tRNA editing/availability as a forcible step in controlling gene expression and driving codon adaptation in T. cruzi. Moreover, we unveil certain differences between parasite and mammalian host tRNA editing and processing, such as cytosine-to-uridine conversion at position 32 of tRNAThrAGU in T. cruzi, that may be exploited for the identification of novel druggable targets of intervention.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/genética , Expressão Gênica , Mamíferos , Mucinas , Processamento Pós-Transcricional do RNA , Trypanosoma cruzi/genética
11.
Cancer Discov ; 12(1): 108-133, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479871

RESUMO

Developing strategies to inflame tumors is critical for increasing response to immunotherapy. Here, we report that low-dose radiotherapy (LDRT) of murine tumors promotes T-cell infiltration and enables responsiveness to combinatorial immunotherapy in an IFN-dependent manner. Treatment efficacy relied upon mobilizing both adaptive and innate immunity and depended on both cytotoxic CD4+ and CD8+ T cells. LDRT elicited predominantly CD4+ cells with features of exhausted effector cytotoxic cells, with a subset expressing NKG2D and exhibiting proliferative capacity, as well as a unique subset of activated dendritic cells expressing the NKG2D ligand RAE1. We translated these findings to a phase I clinical trial administering LDRT, low-dose cyclophosphamide, and immune checkpoint blockade to patients with immune-desert tumors. In responsive patients, the combinatorial treatment triggered T-cell infiltration, predominantly of CD4+ cells with Th1 signatures. Our data support the rational combination of LDRT with immunotherapy for effectively treating low T cell-infiltrated tumors. SIGNIFICANCE: Low-dose radiation reprogrammed the tumor microenvironment of tumors with scarce immune infiltration and together with immunotherapy induced simultaneous mobilization of innate and adaptive immunity, predominantly CD4+ effector T cells, to achieve tumor control dependent on NKG2D. The combination induced important responses in patients with metastatic immune-cold tumors.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Adenocarcinoma Papilar/radioterapia , Neoplasias Ovarianas/radioterapia , Imunidade Adaptativa , Adenocarcinoma Papilar/imunologia , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Feminino , Humanos , Linfócitos do Interstício Tumoral , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/imunologia , Dosagem Radioterapêutica , Microambiente Tumoral
12.
Nucleic Acids Res ; 50(D1): D1109-D1114, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34747477

RESUMO

Single-cell transcriptomics allows the study of immune cell heterogeneity at an unprecedented level of resolution. The Swiss portal for immune cell analysis (SPICA) is a web resource dedicated to the exploration and analysis of single-cell RNA-seq data of immune cells. In contrast to other single-cell databases, SPICA hosts curated, cell type-specific reference atlases that describe immune cell states at high resolution, and published single-cell datasets analysed in the context of these atlases. Additionally, users can privately analyse their own data in the context of existing atlases and contribute to the SPICA database. SPICA is available at https://spica.unil.ch.


Assuntos
Bases de Dados Genéticas , Transcriptoma/genética , Regulação da Expressão Gênica/genética , Humanos , RNA-Seq/métodos , Análise de Célula Única/métodos , Transcriptoma/imunologia
13.
Cancer Cell ; 39(12): 1623-1642.e20, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34739845

RESUMO

The mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TIL) and responsiveness to PD-1 blockade remain partly unknown. In human ovarian cancer, we show that tumor-specific CD8+ TIL accumulate in tumor islets, where they engage antigen and upregulate PD-1, which restrains their functions. Intraepithelial PD-1+CD8+ TIL can be, however, polyfunctional. PD-1+ TIL indeed exhibit a continuum of exhaustion states, with variable levels of CD28 costimulation, which is provided by antigen-presenting cells (APC) in intraepithelial tumor myeloid niches. CD28 costimulation is associated with improved effector fitness of exhausted CD8+ TIL and is required for their activation upon PD-1 blockade, which also requires tumor myeloid APC. Exhausted TIL lacking proper CD28 costimulation in situ fail to respond to PD-1 blockade, and their response may be rescued by local CTLA-4 blockade and tumor APC stimulation via CD40L.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Antígenos CD28/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Células Mieloides/metabolismo , Neoplasias/tratamento farmacológico , Nicho de Células-Tronco/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/imunologia
14.
Front Immunol ; 12: 702552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335615

RESUMO

Availability of highly parallelized immunoassays has renewed interest in the discovery of serology biomarkers for infectious diseases. Protein and peptide microarrays now provide a rapid, high-throughput platform for immunological testing and validation of potential antigens and B-cell epitopes. However, there is still a need for tools to prioritize and select relevant probes when designing these arrays. In this work we describe a computational method called APRANK (Antigenic Protein and Peptide Ranker) which integrates multiple molecular features to prioritize potentially antigenic proteins and peptides in a given pathogen proteome. These features include subcellular localization, presence of repetitive motifs, natively disordered regions, secondary structure, transmembrane spans and predicted interaction with the immune system. We trained and tested this method with a number of bacteria and protozoa causing human diseases: Borrelia burgdorferi (Lyme disease), Brucella melitensis (Brucellosis), Coxiella burnetii (Q fever), Escherichia coli (Gastroenteritis), Francisella tularensis (Tularemia), Leishmania braziliensis (Leishmaniasis), Leptospira interrogans (Leptospirosis), Mycobacterium leprae (Leprae), Mycobacterium tuberculosis (Tuberculosis), Plasmodium falciparum (Malaria), Porphyromonas gingivalis (Periodontal disease), Staphylococcus aureus (Bacteremia), Streptococcus pyogenes (Group A Streptococcal infections), Toxoplasma gondii (Toxoplasmosis) and Trypanosoma cruzi (Chagas Disease). We have evaluated this integrative method using non-parametric ROC-curves and made an unbiased validation using Onchocerca volvulus as an independent data set. We found that APRANK is successful in predicting antigenicity for all pathogen species tested, facilitating the production of antigen-enriched protein subsets. We make APRANK available to facilitate the identification of novel diagnostic antigens in infectious diseases.


Assuntos
Antígenos/análise , Antígenos/imunologia , Simulação por Computador , Infecções/imunologia , Biologia Computacional/métodos , Humanos , Proteoma
15.
Comput Struct Biotechnol J ; 19: 3796-3798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285779

RESUMO

UCell is an R package for evaluating gene signatures in single-cell datasets. UCell signature scores, based on the Mann-Whitney U statistic, are robust to dataset size and heterogeneity, and their calculation demands less computing time and memory than other available methods, enabling the processing of large datasets in a few minutes even on machines with limited computing power. UCell can be applied to any single-cell data matrix, and includes functions to directly interact with Seurat objects. The UCell package and documentation are available on GitHub at https://github.com/carmonalab/UCell.

16.
Nat Commun ; 12(1): 2965, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017005

RESUMO

Single-cell RNA sequencing (scRNA-seq) has revealed an unprecedented degree of immune cell diversity. However, consistent definition of cell subtypes and cell states across studies and diseases remains a major challenge. Here we generate reference T cell atlases for cancer and viral infection by multi-study integration, and develop ProjecTILs, an algorithm for reference atlas projection. In contrast to other methods, ProjecTILs allows not only accurate embedding of new scRNA-seq data into a reference without altering its structure, but also characterizing previously unknown cell states that "deviate" from the reference. ProjecTILs accurately predicts the effects of cell perturbations and identifies gene programs that are altered in different conditions and tissues. A meta-analysis of tumor-infiltrating T cells from several cohorts reveals a strong conservation of T cell subtypes between human and mouse, providing a consistent basis to describe T cell heterogeneity across studies, diseases, and species.


Assuntos
Neoplasias/imunologia , RNA-Seq/métodos , Análise de Célula Única/métodos , Linfócitos T/imunologia , Viroses/imunologia , Animais , Diferenciação Celular/imunologia , Estudos de Coortes , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/sangue , Neoplasias/patologia , Valores de Referência , Software , Especificidade da Espécie , Subpopulações de Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Viroses/sangue
17.
Cell Rep Med ; 2(2): 100194, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33665637

RESUMO

CD8+ T cell recognition of peptide epitopes plays a central role in immune responses against pathogens and tumors. However, the rules that govern which peptides are truly recognized by existing T cell receptors (TCRs) remain poorly understood, precluding accurate predictions of neo-epitopes for cancer immunotherapy. Here, we capitalize on recent (neo-)epitope data to train a predictor of immunogenic epitopes (PRIME), which captures molecular properties of both antigen presentation and TCR recognition. PRIME not only improves prioritization of neo-epitopes but also correlates with T cell potency and unravels biophysical determinants of TCR recognition that we experimentally validate. Analysis of cancer genomics data reveals that recurrent mutations tend to be less frequent in patients where they are predicted to be immunogenic, providing further evidence for immunoediting in human cancer. PRIME will facilitate identification of pathogen epitopes in infectious diseases and neo-epitopes in cancer immunotherapy.


Assuntos
Apresentação de Antígeno/imunologia , Epitopos de Linfócito T/imunologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Humanos , Imunoterapia/métodos , Peptídeos/imunologia
18.
Bioinformatics ; 37(6): 882-884, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32845323

RESUMO

SUMMARY: STACAS is a computational method for the identification of integration anchors in the Seurat environment, optimized for the integration of single-cell (sc) RNA-seq datasets that share only a subset of cell types. We demonstrate that by (i) correcting batch effects while preserving relevant biological variability across datasets, (ii) filtering aberrant integration anchors with a quantitative distance measure and (iii) constructing optimal guide trees for integration, STACAS can accurately align scRNA-seq datasets composed of only partially overlapping cell populations. AVAILABILITY AND IMPLEMENTATION: Source code and R package available at https://github.com/carmonalab/STACAS; Docker image available at https://hub.docker.com/repository/docker/mandrea1/stacas_demo.


Assuntos
Análise de Célula Única , Software , RNA-Seq , Análise de Sequência de RNA , Sequenciamento do Exoma
19.
Oncoimmunology ; 9(1): 1737369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32313720

RESUMO

Recent studies have proposed that tumor-specific tumor-infiltrating CD8+ T lymphocytes (CD8 TIL) can be classified into two main groups: "exhausted" TILs, characterized by high expression of the inhibitory receptors PD-1 and TIM-3 and lack of transcription factor 1 (Tcf1); and "memory-like" TILs, with self-renewal capacity and co-expressing Tcf1 and PD-1. However, a comprehensive definition of the heterogeneity existing within CD8 TILs has yet to be clearly established. To investigate this heterogeneity at the transcriptomic level, we performed paired single-cell RNA and TCR sequencing of CD8 T cells infiltrating B16 murine melanoma tumors, including cells of known tumor specificity. Unsupervised clustering and gene-signature analysis revealed four distinct CD8 TIL states - exhausted, memory-like, naïve and effector memory-like (EM-like) - and predicted novel markers, including Ly6C for the EM-like cells, that were validated by flow cytometry. Tumor-specific PMEL T cells were predominantly found within the exhausted and memory-like states but also within the EM-like state. Further, T cell receptor sequencing revealed a large clonal expansion of exhausted, memory-like and EM-like cells with partial clonal relatedness between them. Finally, meta-analyses of public bulk and single-cell RNA-seq data suggested that anti-PD-1 treatment induces the expansion of EM-like cells. Our reference map of the transcriptomic landscape of murine CD8 TILs will help interpreting future bulk and single-cell transcriptomic studies and may guide the analysis of CD8IL subpopulations in response to therapeutic interventions.


Assuntos
Melanoma Experimental , Animais , Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Melanoma Experimental/genética , Camundongos , Receptor de Morte Celular Programada 1/genética , RNA-Seq , Transcriptoma
20.
Front Immunol ; 11: 340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174925

RESUMO

In the context of adoptive T cell transfer (ACT) for cancer treatment, it is crucial to generate in vitro large amounts of tumor-specific CD8 T cells with high potential to persist in vivo. PD-1, Tim3, and CD39 have been proposed as markers of tumor-specific tumor-infiltrating CD8 T lymphocytes (CD8 TILs). However, these molecules are highly expressed by terminally differentiated exhausted CD8 T cells (Tex) that lack proliferation potential. Therefore, optimized strategies to isolate tumor-specific TILs with high proliferative potential, such as Tcf1+ precursor exhausted T cells (Tpe) are needed to improve in vivo persistence of ACT. Here we aimed at defining cell surface markers that would unequivocally identify Types for precision cell sorting increasing the purity of tumor-specific PD-1+ Tcf1+ Tpe from total TILs. Transcriptomic analysis of Tpe vs. Tex CD8 TIL subsets from B16 tumors and primary human melanoma tumors revealed that Tpes are enriched in Slamf6 and lack Entpd1 and Havcr2 expression, which encode Slamf6, CD39, and Tim3 cell surface proteins, respectively. Indeed, we observed by flow cytometry that CD39- Tim3- Slamf6+ PD-1+ cells yielded maximum enrichment for tumor specific PD-1+ Tcf1+ OT1 TILs in B16.OVA tumors. Moreover, this population showed higher re-expansion capacity upon an acute infection recall response compared to the CD39+ counterparts or bulk PD-1+ TILs. Hence, we report an enhanced sorting strategy (CD39- Tim3- Slamf6+ PD-1+) of Tpes. In conclusion, we show that optimization of CD8 TIL cell sorting strategy is a viable approach to improve recall capacity and in vivo persistence of transferred cells in the context of ACT.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD8-Positivos/imunologia , Separação Celular/métodos , Linfócitos do Interstício Tumoral/imunologia , Animais , Antígenos CD/análise , Apirase/análise , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Feminino , Humanos , Linfócitos do Interstício Tumoral/citologia , Melanoma/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptor de Morte Celular Programada 1/análise , Receptores CXCR5/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA