Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38786097

RESUMO

Neurodegenerative diseases (NDDs) are progressive multifactorial disorders of the nervous system sharing common pathogenic features, including intracellular misfolded protein aggregation, mitochondrial deficit, and inflammation. Taking into consideration the multifaceted nature of NDDs, development of multitarget-directed ligands (MTDLs) has evolved as an attractive therapeutic strategy. Compounds that target the cannabinoid receptor type II (CB2R) are rapidly emerging as novel effective MTDLs against common NDDs, such as Alzheimer's disease (AD). We recently developed the first CB2R bitopic/dualsteric ligand, namely FD22a, which revealed the ability to induce neuroprotection with fewer side effects. To explore the potential of FD22a as a multitarget drug for the treatment of NDDs, we investigated here its ability to prevent the toxic effect of ß-amyloid (Aß25-35 peptide) on human cellular models of neurodegeneration, such as microglia (HMC3) and glioblastoma (U87-MG) cell lines. Our results displayed that FD22a efficiently prevented Aß25-35 cytotoxic and proinflammatory effects in both cell lines and counteracted ß-amyloid-induced depression of autophagy in U87-MG cells. Notably, a quantitative proteomic analysis of U87-MG cells revealed that FD22a was able to potently stimulate the autophagy-lysosomal pathway (ALP) by activating its master transcriptional regulator TFEB, ultimately increasing the potential of this novel CB2R bitopic/dualsteric ligand as a multitarget drug for the treatment of NDDs.


Assuntos
Peptídeos beta-Amiloides , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Proteômica , Receptor CB2 de Canabinoide , Humanos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Proteômica/métodos , Receptor CB2 de Canabinoide/metabolismo , Ligantes , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Autofagia/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37762153

RESUMO

Mood alterations, anxiety, and cognitive impairments associated with adult-onset hypothyroidism often persist despite replacement treatment. In rodent models of hypothyroidism, replacement does not bring 3-iodothyronamine (T1AM) brain levels back to normal. T1AM is a thyroid hormone derivative with cognitive effects. Using a pharmacological hypothyroid mouse model, we investigated whether augmenting levothyroxine (L-T4) with T1AM improves behavioural correlates of depression, anxiety, and memory and has an effect on hippocampal neurogenesis. Hypothyroid mice showed impaired performance in the novel object recognition test as compared to euthyroid mice (discrimination index (DI): 0.02 ± 0.09 vs. 0.29 ± 0.06; t = 2.515, p = 0.02). L-T4 and L-T4+T1AM rescued memory (DI: 0.27 ± 0.08 and 0.34 ± 0.08, respectively), while T1AM had no effect (DI: -0.01 ± 0.10). Hypothyroidism reduced the number of neuroprogenitors in hippocampal neurogenic niches by 20%. L-T4 rescued the number of neuroprogenitors (mean diff = 106.9 ± 21.40, t = 4.99, pcorr = 0.003), while L-T4+T1AM produced a 30.61% rebound relative to euthyroid state (mean diff = 141.6 ± 31.91, t = 4.44, pcorr = 0.004). We performed qPCR analysis of 88 genes involved in neurotrophic signalling pathways and found an effect of treatment on the expression of Ngf, Kdr, Kit, L1cam, Ntf3, Mapk3, and Neurog2. Our data confirm that L-T4 is necessary and sufficient for recovering memory and hippocampal neurogenesis deficits associated with hypothyroidism, while we found no evidence to support the role of non-canonical TH signalling.


Assuntos
Hipotireoidismo , Tiroxina , Camundongos , Animais , Tiroxina/metabolismo , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Hipocampo/metabolismo , Suplementos Nutricionais , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
3.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511328

RESUMO

Microglial dysfunction is one of the hallmarks and leading causes of common neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD). All these pathologies are characterized by aberrant aggregation of disease-causing proteins in the brain, which can directly activate microglia, trigger microglia-mediated neuroinflammation, and increase oxidative stress. Inhibition of glial activation may represent a therapeutic target to alleviate neurodegeneration. Recently, 3-iodothyronamine (T1AM), an endogenous derivative of thyroid hormone (TH) able to interact directly with a specific GPCR known as trace amine-associated receptor 1 (TAAR1), gained interest for its ability to promote neuroprotection in several models. Nevertheless, T1AM's effects on microglial disfunction remain still elusive. In the present work we investigated whether T1AM could inhibit the inflammatory response of human HMC3 microglial cells to LPS/TNFα or ß-amyloid peptide 25-35 (Aß25-35) stimuli. The results of ELISA and qPCR assays revealed that T1AM was able to reduce microglia-mediated inflammatory response by inhibiting the release of proinflammatory factors, including IL-6, TNFα, NF-kB, MCP1, and MIP1, while promoting the release of anti-inflammatory mediators, such as IL-10. Notably, T1AM anti-inflammatory action in HMC3 cells turned out to be a TAAR1-mediated response, further increasing the relevance of the T1AM/TAAR1 system in the management of NDDs.


Assuntos
Microglia , Doenças Neurodegenerativas , Humanos , Anti-Inflamatórios/farmacologia , Linhagem Celular , Inflamação , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Life (Basel) ; 12(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36143389

RESUMO

T1AM, a derivative of thyroid hormones, and its major catabolite, TA1, produce effects on memory acquisition in rodents. In the present study, we compared the effects of exogenous T1AM and TA1 on protein belonging to signal transduction pathways, assuming that TA1 may strengthen T1AM's effects in brain tissue. A hybrid line of cancer cells of mouse neuroblastoma and rat glioma (NG 108-15), as well as a human glioblastoma cell line (U-87 MG) were used. We first characterized the in vitro model by analyzing gene expression of proteins involved in the glutamatergic cascade and cellular uptake of T1AM and TA1. Then, cell viability, glucose consumption, and protein expression were assessed. Both cell lines expressed receptors implicated in glutamatergic pathway, namely Nmdar1, Glur2, and EphB2, but only U-87 MG cells expressed TAAR1. At pharmacological concentrations, T1AM was taken up and catabolized to TA1 and resulted in more cytotoxicity compared to TA1. The major effect, highlighted in both cell lines, albeit on different proteins involved in the glutamatergic signaling, was an increase in phosphorylation, exerted by T1AM but not reproduced by TA1. These findings indicate that, in our in vitro models, T1AM can affect proteins involved in the glutamatergic and other signaling pathways, but these effects are not strengthened by TA1.

5.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884442

RESUMO

Proprotein convertase subtilisin kexin 9 (PCSK9) increases LDL cholesterol (C) concentration by accelerating the hepatic degradation of the LDL receptor (R) thus promoting atherogenesis. The molecule, however, also exerts proinflammatory effects independent of circulating LDL-C by enhancing local cytokine production and activation of NFkB, a process that might involve Toll-like receptor 4 (TLR4), a crucial component of the innate immunity system. Tissue factor (TF), a glycoprotein which plays an essential role in coagulation and inflammation, is rapidly induced by circulating monocytes stimulated by proinflammatory agents through NFkB-dependent mechanisms. The aims of our study were (1) to assess whether PCSK9 may induce monocytic TF expression and (2) to evaluate whether the TLR4/NFkB signaling pathway may contribute to that effect. Experiments were carried out in peripheral blood mononuclear cells (PBMCs), THP-1 cells, and HEK293 cells transfected with plasmids encoding the human TLR4 complex. PCSK9 increased procoagulant activity (PCA), mRNA and TF protein expression in both PBMCs and THP-1 cultures. Pre-treatment with inhibitors of TLR4/NFkB signaling such as LPS-RS, CLI-095, and BAY 11-7082, downregulated PCSK9-induced TF expression. A similar effect was obtained by incubating cell cultures with anti-PCSK9 human monoclonal antibody. In TLR4-HEK293 cells, PCSK9 activated the TLR4/NFkB signaling pathway to an extent comparable to LPS, the specific agonist of TLR4s and quantitative confocal microscopy documented the colocalization of PCSK9 and TLR4s. In conclusion, PCSK9 induces TF expression through activation of TLR4/NFkB signaling.


Assuntos
Monócitos/citologia , Pró-Proteína Convertase 9/metabolismo , Tromboplastina/genética , Tromboplastina/metabolismo , Receptor 4 Toll-Like/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Microscopia Confocal , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Nitrilas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonas/farmacologia , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Transfecção , Regulação para Cima/efeitos dos fármacos
6.
Comput Struct Biotechnol J ; 19: 6140-6156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745450

RESUMO

We exploited a multi-scale microscopy imaging toolbox to address some major issues related to SARS-CoV-2 interactions with host cells. Our approach harnesses both conventional and super-resolution fluorescence microscopy and easily matches the spatial scale of single-virus/cell checkpoints. After its validation through the characterization of infected cells and virus morphology, we leveraged this toolbox to reveal subtle issues related to the entry phase of SARS-CoV-2 variants in Vero E6 cells. Our results show that in Vero E6 cells the B.1.1.7 strain (aka Alpha Variant of Concern) is associated with much faster kinetics of endocytic uptake compared to its ancestor B.1.177. Given the cell-entry scenario dominated by the endosomal "late pathway", the faster internalization of B.1.1.7 could be directly related to the N501Y mutation in the S protein, which is known to strengthen the binding of Spike receptor binding domain with ACE2. Remarkably, we also directly observed the central role of clathrin as a mediator of endocytosis in the late pathway of entry. In keeping with the clathrin-mediated endocytosis, we highlighted the non-raft membrane localization of ACE2. Overall, we believe that our fluorescence microscopy-based approach represents a fertile strategy to investigate the molecular features of SARS-CoV-2 interactions with cells.

7.
Front Cell Dev Biol ; 9: 669381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291045

RESUMO

Mesangiogenic progenitor cells (MPCs) have been isolated from human bone marrow (BM) mononuclear cells. They attracted particular attention for the ability to differentiate into exponentially growing mesenchymal stromal cells while retaining endothelial differentiative potential. MPC power to couple mesengenesis and angiogenesis highlights their tissue regenerative potential and clinical value, with particular reference to musculoskeletal tissues regeneration. BM and adipose tissue represent the most promising adult multipotent cell sources for bone and cartilage repair, although discussion is still open on their respective profitability. Culture determinants, as well as tissues of origin, appeared to strongly affect the regenerative potential of cell preparations, making reliable methods for cell isolation and growth a prerequisite to obtain cell-based medicinal products. Our group had established a definite consistent protocol for MPC culture, and here, we present data showing MPCs to be tissue specific.

8.
J Cyst Fibros ; 20(6): 1053-1061, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33583732

RESUMO

BACKGROUND: Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme that modulates the S-thiolation status of intracellular factors involved in cancer cell survival or in the inflammatory response. Studies focusing on chronic obstructive pulmonary disease (COPD) have demonstrated that GSTO1-1 is detectable in alveolar macrophages, airway epithelium and in the extracellular compartment, where its functions have not been completely understood. Moreover GSTO1-1 polymorphisms have been associated with an increased risk to develop COPD. Against this background, the aim of this study was to evaluate GSTO1-1 levels and its polymorphisms in cystic fibrosis (CF) patients. METHODS: Clinical samples from a previous study published by our groups were analyzed for GSTO1-1 levels and polymorphisms. For comparison, a model of lung inflammation in CFTR-knock out mice was also used. RESULTS: Our data document that soluble GSTO1-1 can be found in the airways of CF patients and correlates with inflammatory parameters such as neutrophilic elastase and the chemokine IL-8. A negative correlation was found between GSTO1-1 levels and the spirometric parameter FEV1 and the FEV1/FVC ratio. Additionally, the A140D polymorphism of GSTO1-1 was associated with lower levels of the antiinflammatory mediators PGE2 and 15(S)-HETE, and with lower values of the FEV1/FVC ratio in CF subjects with the homozygous CFTR ΔF508 mutation. CONCLUSIONS: Our data suggest that extracellular GSTO1-1 and its polymorphysms could have a biological and clinical significance in CF. Pathophysiological functions of GSTOs are far from being completely understood, and more studies are required to understand the role(s) of extracellular GSTO1-1 in inflamed tissues.


Assuntos
Proteínas de Transporte/genética , Fibrose Cística/enzimologia , Fibrose Cística/genética , Glutationa Transferase/genética , Polimorfismo de Nucleotídeo Único , Animais , Fibrose Cística/fisiopatologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Função Respiratória , Índice de Gravidade de Doença
9.
Front Cell Dev Biol ; 8: 596452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364234

RESUMO

Hematopoiesis is hosted, supported and regulated by a special bone marrow (BM) microenvironment known as "niche." BM niches have been classified based on micro-anatomic distance from the bone surface into "endosteal" and "central" niches. Whilst different blood vessels have been found in both BM niches in mice, our knowledge of the human BM architecture is much more limited. Here, we have used a combination of markers including NESTIN, CD146, and αSMA labeling different blood vessels in benign human BM. Applying immunohistochemical/immunofluorescence techniques on BM trephines and performing image analysis on almost 300 microphotographs, we detected high NESTIN expression in BM endothelial cells (BMECs) of small arteries (A) and endosteal arterioles (EA), and also in very small vessels we named NESTIN+ capillary-like tubes (NCLTs), not surrounded by sub-endothelial perivascular cells that occasionally reported low levels of NESTIN expression. Statistically, NCLTs were detected within 40 µm from bone trabecula, frequently found in direct contact to the bone line and spatially correlated with hematopoietic stem/progenitor cells. Our results support the expression of NESTIN in human BMECs of EA and A in accordance with the updated classification of murine BM micro-vessels. NCLTs for their peculiar characteristics and micro-anatomical localization have been here proposed as transitional vessels possibly involved in regulating human hematopoiesis.

10.
Molecules ; 25(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110992

RESUMO

3-iodothyronamine (T1AM) and the recently developed analog SG-2 are rapidly emerging as promising multi-target neuroprotective ligands able to reprogram lipid metabolism and to produce memory enhancement in mice. To elucidate the molecular mechanisms underlying the multi-target effects of these novel drug candidates, here we investigated whether the modulation of SIRT6, known to play a key role in reprogramming energy metabolism, might also drive the activation of clearing pathways, such as autophagy and ubiquitine-proteasome (UP), as further mechanisms against neurodegeneration. We show that both T1AM and SG-2 increase autophagy in U87MG cells by inducing the expression of SIRT6, which suppresses Akt activity thus leading to mTOR inhibition. This effect was concomitant with down-regulation of autophagy-related genes, including Hif1α, p53 and mTOR. Remarkably, when mTOR was inhibited a concomitant activation of autophagy and UP took place in U87MG cells. Since both compounds activate autophagy, which is known to sustain long term potentiation (LTP) in the entorhinal cortex (EC) and counteracting AD pathology, further electrophysiological studies were carried out in a transgenic mouse model of AD. We found that SG-2 was able to rescue LTP with an efficacy comparable to T1AM, further underlying its potential as a novel pleiotropic agent for neurodegenerative disorders treatment.


Assuntos
Gangliosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Sirtuínas/metabolismo , Tironinas/farmacologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Córtex Entorrinal/patologia , Gangliosídeos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos Transgênicos , Fármacos Neuroprotetores/química , Serina-Treonina Quinases TOR/metabolismo , Tironinas/química
11.
Oncotarget ; 10(63): 6781-6790, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31827721

RESUMO

Multiple myeloma (MM) progresses mainly in the bone marrow where the involvement of a specific microenvironment plays a critical role in maintaining plasma cell growth, spread, and survival. In active disease, the switch from a pre-vascular/non-active phase to a vascular phase is coupled with the impairment of bone turnover. Previously, we have isolated Mesangiogenic Progenitor Cells (MPCs), a bone marrow population that showed mesengenic and angiogenic potential, both in vitro and in vivo. MPC differentiation into musculoskeletal tissue and their ability of sprouting angiogenesis are mutually exclusive, suggesting a role in the imbalancing of the microenvironment in multiple myeloma. MPCs from 32 bone marrow samples of multiple myeloma and 23 non-hematological patients were compared in terms of frequency, phenotype, mesengenic/angiogenic potential, and gene expression profile. Defective osteogenesis was recorded for MM-derived MPCs that showed longer angiogenic sprouting distances respect to non-hematological MPCs, retaining this capability after mesengenic induction. This altered MPCs differentiation potential was not detected in asymptomatic myelomatous disease. These in vitro experiments are suggestive of a forced angiogenic fate in MPCs isolated from MM patients, which also showed increased sprouting activity. Taking together our results suggest a possible role of these cells in the "angiogenic switch" in the MM micro-environment.

12.
Front Pharmacol ; 10: 1027, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572197

RESUMO

Background: The G protein-coupled receptor (GPCR) trace amine-associated receptor 1 (TAAR1) is expressed across brain areas involved in emotions, reward and cognition, and modulates monoaminergic and glutamatergic neurotransmissions. TAAR1 is stimulated with nanomolar affinity by 3-iodothyronamine (T1AM), an endogenous messenger considered a novel branch of thyroid hormone signaling. The human gene for TAAR1 maps to locus 6q23, within a region associated with major mental disorders. Materials and Methods: We screened a cohort of patients with major mental disorders (n = 104) and a group of healthy controls (n = 130) for TAAR1 variants. HEK293 cells were transiently transfected with: i) wild-type TAAR1 and ii) mutated TAAR1, either in homozygous or heterozygous state. Cell surface expression and Gs/adenylyl cyclase activation upon administration of ß-phenylethylamine (PEA), T1AM, and RO5166017, were assessed. Results: We detected 13 missense variants in TAAR1 coding region, with a significant enrichment in patients as compared to healthy controls (11 vs. 1, 1 variant in both groups, p < 0.01). In silico analysis identified four dysfunctional variants, all in patients. Three of these-R23C, Y131C, and C263R-were functionally characterized. In cells co-transfected with wild-type and mutated TAAR1, we observed a significant reduction of cell surface expression. In heterozygosity, the three TAAR1 variants substantially dampened Gs signaling in response to PEA, and, more robustly, to T1AM. Co-stimulation with PEA and RO5166017 did not yield any improvement in Gs signaling. R23C, Y131C, and C263R are rare in the general population and map in functionally important highly conserved positions across TAAR1 orthologous and paralogous genes. Conclusions: Our findings suggest that disruptions of TAAR1 activity may be relevant to the pathophysiology of mental disorders, thereby providing a promising target for novel psychopharmacological interventions.

13.
Epigenomics ; 10(11): 1431-1443, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30088417

RESUMO

AIM: To investigate mitochondrial DNA (mtDNA) copy number and D-loop region methylation in carriers of SOD1, TARDBP, FUS and C9orf72 mutations. METHODS: Investigations were performed in blood DNA from 114 individuals, including amyotrophic lateral sclerosis (ALS) patients, presymptomatic carriers and noncarrier family members. RESULTS: Increased mtDNA copy number (p = 0.0001) was observed in ALS patients, and particularly in those with SOD1 or C9orf72 mutations. SOD1 mutation carriers showed also a significant decrease in D-loop methylation levels (p = 0.003). An inverse correlation between D-loop methylation levels and the mtDNA copy number (p = 0.0005) was observed. CONCLUSION: Demethylation of the D-loop region could represent a compensatory mechanism for mtDNA upregulation in carriers of ALS-linked SOD1 mutations.


Assuntos
Esclerose Lateral Amiotrófica/genética , Variações do Número de Cópias de DNA , Metilação de DNA , DNA Mitocondrial/genética , Adulto , Idoso , Proteína C9orf72/genética , Proteínas de Ligação a DNA/genética , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética
14.
Int J Mol Sci ; 19(5)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29786646

RESUMO

Obesity is a complex disease associated with environmental and genetic factors. 3-Iodothyronamine (T1AM) has revealed great potential as an effective weight loss drug. We used metabolomics and associated transcriptional gene and protein expression analysis to investigate the tissue specific metabolic reprogramming effects of subchronic T1AM treatment at two pharmacological daily doses (10 and 25 mg/kg) on targeted metabolic pathways. Multi-analytical results indicated that T1AM at 25 mg/kg can act as a novel master regulator of both glucose and lipid metabolism in mice through sirtuin-mediated pathways. In liver, we observed an increased gene and protein expression of Sirt6 (a master gene regulator of glucose) and Gck (glucose kinase) and a decreased expression of Sirt4 (a negative regulator of fatty acids oxidation (FAO)), whereas in white adipose tissue only Sirt6 was increased. Metabolomics analysis supported physiological changes at both doses with most increases in FAO, glycolysis indicators and the mitochondrial substrate, at the highest dose of T1AM. Together our results suggest that T1AM acts through sirtuin-mediated pathways to metabolically reprogram fatty acid and glucose metabolism possibly through small molecules signaling. Our novel mechanistic findings indicate that T1AM has a great potential as a drug for the treatment of obesity and possibly diabetes.


Assuntos
Fármacos Antiobesidade/farmacologia , Proteínas Mitocondriais/genética , Obesidade/metabolismo , Sirtuínas/genética , Tironinas/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/uso terapêutico , Ácidos Graxos/metabolismo , Feminino , Quinases do Centro Germinativo , Glucose/metabolismo , Glicólise , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Obesidade/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sirtuínas/metabolismo , Tironinas/uso terapêutico
15.
Stem Cell Res Ther ; 8(1): 106, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464921

RESUMO

BACKGROUND: Mesangiogenic progenitor cells (MPCs) have shown the ability to differentiate in-vitro toward mesenchymal stromal cells (MSCs) as well as angiogenic potential. MPCs have so far been described in detail as progenitors of the mesodermal lineage and appear to be of great significance in tissue regeneration and in hemopoietic niche regulation. On the contrary, information regarding the MPC angiogenic process is still incomplete and requires further clarification. In particular, genuine MPC angiogenic potential should be confirmed in-vivo. METHODS: In the present article, markers and functions associated with angiogenic cells have been dissected. MPCs freshly isolated from human bone marrow have been induced to differentiate into exponentially growing MSCs (P2-MSCs). Cells have been characterized and angiogenesis-related gene expression was evaluated before and after mesengenic differentiation. Moreover, angiogenic potential has been tested by in-vitro and in-vivo functional assays. RESULTS: MPCs showed a distinctive gene expression profile, acetylated-low density lipoprotein uptake, and transendothelial migration capacity. However, mature endothelial markers and functions of endothelial cells, including the ability to form new capillaries, were absent, thus suggesting MPCs to be very immature endothelial progenitors. MPCs showed marked 3D spheroid sprouting activating the related molecular machinery, a clear in-vitro indication of early angiogenesis. Indeed, MPCs applied to chicken chorioallantoic membrane induced and participated in neovessel formation. All of these features were lost in mesengenic terminally differentiated P2-MSCs, showing definite separation of the two differentiation lineages. CONCLUSION: Our results confirm the bona-fide angiogenic potential of MPCs and suggest that the high variability reported for MSC cultures, responsible for the controversies regarding MSC angiogenic potential, could be correlated to variable percentages of co-isolated MPCs in the different culture conditions so far used.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Adipócitos/citologia , Adipócitos/metabolismo , Células-Tronco Adultas/metabolismo , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade
16.
Oncotarget ; 8(3): 4914-4921, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27902486

RESUMO

Fibronectin is a component of the extracellular matrix that links collagen fibers to integrins on the cell's surface. The splicing isoforms, containing the ED-B domain, are not expressed in adult tissues but only in tumor stroma or during embryonic development. Fibroblasts and endothelial cells express ED-B fibronectin during angiogenesis. Also cancer cells can synthetize ED-B fibronectin, but its function in tumor growth needs to be further elucidated.We evaluated the expression of ED-B fibronectin in prostate cancer cell lines: PC3 and DU145. Using TGF-ß, we induced epithelial to mesenchymal transition in culture and observed an increase of ED-B fibronectin expression. Thereafter, we evaluated the expression of ED-B fibronectin in multipotent mesangiogenic progenitor cells, and in mesenchymal stromal cells. The expression of ED-B fibronectin was much higher in mesenchymal than prostate cancer cells even after the epithelial to mesenchymal transition.Epithelial to mesenchymal transition is a key step for tumor progression contributing to the metastatic spread. Therefore, circulating cancer cells could seed into the metastatic niche taking advantage from the ED-B fibronectin that secrete their own.


Assuntos
Biomarcadores Tumorais/metabolismo , Citocinas/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias da Próstata/metabolismo , Regulação para Cima , Linhagem Celular Tumoral , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibronectinas , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Metástase Neoplásica , Fator de Crescimento Transformador beta/farmacologia
17.
Front Cell Dev Biol ; 4: 114, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27800477

RESUMO

Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated in vitro under selective culture conditions and shown to retain both mesengenic and angiogenic potential. MPCs also co-isolated with multipotent stromal cells (MSCs) when bone marrow primary cultures were set up for clinical applications, using human serum (HS) in place of fetal bovine serum (FBS). MPC culture purity (over 95%) is strictly dependent on HS supplementation with significant batch-to-batch variability. In the present paper we screened different sources of commercially available pooled human AB type serum (PhABS) for their ability to promote MPC production under selective culture conditions. As the majority of "contaminating" cells in MPC cultures were represented by MSC-like cells, we hypothesized a role by differentiating agents present in the sera. Therefore, we tested a number of growth factors (hGF) and found that higher concentrations of FGF-2, EGF, PDGF-AB, and VEGF-A as well as lower concentration of IGF-1 give sub-optimal MPC recovery. Gene expression analysis of hGF receptors was also carried out both in MSCs and MPCs, suggesting that FGF-2, EGF, and PDGF-AB could act promoting MSC proliferation, while VEGF-A contribute to MSC-like cell contamination, triggering MPC differentiation. Here we demonstrated that managing hGF contents, together with applying specific receptors inhibitors (Erlotinib-HCl and Nintedanib), could significantly mitigate the batch-to-batch variability related to serum supplementation. These data represent a fundamental milestone in view of manufacturing MPC-based medicinal products.

18.
Thromb J ; 14: 45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822142

RESUMO

BACKGROUND: Besides maintaining intracellular glutathione stores, gamma-glutamyltransferase(GGT) generates reactive oxygen species and activates NFkB, a redox-sensitive transcription factor key in the induction of Tissue Factor (TF) gene expression, the principal initiator of the clotting cascade. Thus, GGT might be involved in TF-mediated coagulation processes, an assumption untested insofar. METHODS: Experiments were run with either equine, enzymatically active GGT or human recombinant (hr) GGT, a wheat germ-derived protein enzymatically inert because of missing post-translational glycosylation. TF Procoagulant Activity (PCA, one-stage clotting assay), TF antigen(ELISA) and TFmRNA(real-time PCR) were assessed in unpooled human peripheral blood mononuclear cell(PBMC) suspensions obtained from healthy donors through discontinuous Ficoll/Hystopaque density gradient. RESULTS: Equine GGT increased PCA, an effect insensitive to GGT inhibition by acivicin suggesting mechanisms independent of its enzymatic activity, a possibility confirmed by the maintained stimulation in response to hrGGT, an enzymatically inactive molecule. Endotoxin(LPS) contamination of GGT preparations was excluded by heat inactivation studies and direct determination(LAL method) of LPS concentrations <0.1 ng/mL practically devoid of procoagulant effect. Inhibition by anti-GGT antibodies corroborated that conclusion. Upregulation by hrGGT of TF antigen and mRNA and its downregulation by BAY-11-7082, a NFkB inhibitor, and N-acetyl-L-cysteine, an antioxidant, was consistent with a NFkB-driven, redox-sensitive transcriptional site of action. CONCLUSIONS: GGT upregulates TF expression independent of its enzymatic activity, a cytokine-like behaviour mediated by NFκB activation, a mechanism contributing to promote acute thrombotic events, a possibility in need, however, of further evaluation.

19.
J Inflamm (Lond) ; 13: 14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27152091

RESUMO

BACKGROUND: Intimate links connect tissue factor (TF), the principal initiator of the clotting cascade, to inflammation, a cross-talk amplified by locally generated Angiotensin (AT) II, the effector arm of the Renin Angiotensin System (RAS). C21, a selective AT2R agonist, downregulates the transcriptional expression of TF in LPS-activated peripheral blood mononuclear cell(PBMC)s implying the existence of ATII type 2 receptor (AT2R)s whose stimulation attenuates inflammation-mediated procoagulant responses. High glucose, by activating key signalling pathways and increasing the cellular content of RAS components, augments TF expression and potentiates the inhibitory effect of AT1R antagonists. It is unknown, however, the impact of that stimulus on AT2R-mediated TF inhibition, an information useful to understand more precisely the role of that signal transduction pathway in the inflammation-mediated coagulation process. TF antigen (ELISA), procoagulant activity (PCA, 1-stage clotting assay) and TF-mRNA (real-time polymerase chain reaction) were assessed in PBMCs activated by LPS, a pro-inflammatory and procoagulant stimulus, exposed to either normal (N) or HG concentrations (5.5 and 50 mM respectively). RESULTS: HG upregulated TF expression, an effect abolished by BAY 11-7082, a NFκB inhibitor. C21 inhibited LPS-stimulated PCA, TFAg and mRNA to an extent independent of glucose concentration but the response to Olmesartan, an AT1R antagonist, was quite evidently potentiated by HG. CONCLUSIONS: HG stimulates LPS-induced TF expression through mechanisms completely dependent upon NFkB activation. Both AT2R-stimulation and AT1R-blockade downregulate inflammation-mediated procoagulant response in PBMCs but HG impacts differently on the two different signal transduction pathways.

20.
Stem Cells Dev ; 25(9): 661-73, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26975798

RESUMO

Mesenchymal stromal cells (MSCs) have been the object of extensive research for decades, due to their intrinsic clinical value. Nonetheless, the unambiguous identification of a unique in vivo MSC progenitor is still lacking, and the hypothesis that these multipotent cells could possibly arise from different in vivo precursors has been gaining consensus in the last years. We identified a novel multipotent cell population in human adult bone marrow that we first named Mesodermal Progenitor Cells (MPCs) for the ability to differentiate toward the mesenchymal lineage, while still retaining angiogenic potential. Despite extensive characterization, MPCs positioning within the differentiation pathway and whether they can be ascribed as possible distinctive progenitor of the MSC lineage is still unclear. In this study, we describe the ex vivo isolation of one novel bone marrow subpopulation (Pop#8) with the ability to generate MPCs. Multicolor flow cytometry in combination with either fluorescence-activated cell sorting or magnetic-activated cell sorting were applied to characterize Pop#8 as CD64(bright)CD31(bright)CD14(neg). We defined Pop#8 properties in culture, including the potential of Pop#8-derived MPCs to differentiate into MSCs. Gene expression data were suggestive of Pop#8 in vivo involvement in hematopoietic stem cell niche constitution/maintenance. Pop#8 resulted over three logs more frequent than other putative MSC progenitors, corroborating the idea that most of the controversies regarding culture-expanded MSCs could be the consequence of different culture conditions that select or promote particular subpopulations of precursors.


Assuntos
Antígenos CD/metabolismo , Células da Medula Óssea/citologia , Separação Celular/métodos , Mesoderma/citologia , Neovascularização Fisiológica , Células-Tronco/citologia , Adulto , Linhagem da Célula , Forma Celular , Células Cultivadas , Feminino , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA