Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 217(2): 416-23, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21074571

RESUMO

INTRODUCTION: Cognitive and attentional deficits in schizophrenia include impairment of the sensorimotor filter as measured by prepulse inhibition (PPI). In this way, the study of animals that naturally present low PPI responses could be a useful approach for screening new antipsychotic drugs. Several pieces of evidence suggest that dopamine and nitric oxide (NO) can modulate PPI but their role in those animals is unknown. OBJECTIVES: The aim of this study was to investigate the role of dopamine and NO in Wistar rats with naturally low PPI response. METHODS: Male Wistar rats with low PPI responses received an i.p. injection of the antipsychotics haloperidol (0.1, 0.3 or 1mg/kg) or clozapine (0.5, 1.5 or 5mg/kg), the anxiolytic diazepam (1 or 3mg/kg) or the NO synthase (NOS) inhibitors, N(G)- nitro-l-arginine (l-NOARG; 40mg/kg, acutely or sub-chronically) or 7-Nitroindazole (7-NI; 3, 10 or 30mg/kg). All animals were submitted to the PPI test 1h after injection. Striatal and cortical dopamine, DOPAC, and noradrenaline levels of rats with low PPI responses were compared to rats with normal PPI responses. RESULTS: We found increased levels of catecholamines on the striatum and prefrontal cortex of Wistar rats with low PPI. In these animals, both antipsychotics, typical and atypical, and NOS inhibitors significantly increased PPI. CONCLUSION: Taken together, our findings suggest that the low PPI phenotype may be driven by an overactive catecholamine system. Additionally, our results corroborate the hypothesis of dopamine and NO interaction on PPI modulation and suggest that Wistar rats with low PPI may represent an interesting non-pharmacological model to evaluate new potential antipsychotics.


Assuntos
Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Inibição Psicológica , Nitroarginina/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Estimulação Acústica/efeitos adversos , Análise de Variância , Animais , Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diazepam/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Comportamento Exploratório/efeitos dos fármacos , Haloperidol/farmacologia , Masculino , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Wistar
2.
Br J Pharmacol ; 151(6): 860-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17533426

RESUMO

BACKGROUND AND PURPOSE: In this work, a neuroactive peptide from the venom of the neotropical wasp Polybia occidentalis was isolated and its anti-nociceptive effects were characterized in well-established pain induction models. EXPERIMENTAL APPROACH: Wasp venom was analysed by reverse-phase HPLC and fractions screened for anti-nociceptive activity. The structure of the most active fraction was identified by electron-spray mass spectrometry (ESI-MS/MS) and it was further assessed in two tests of anti-nociceptive activity in rats: the hot plate and tail flick tests. KEY RESULTS: The most active fraction contained a peptide whose structure was Arg-Pro-Pro-Gly-Phe-Thr-Pro-Phe-Arg-OH, which corresponds to that of Thr(6)-BK, a bradykinin analogue. This peptide was given by i.c.v. injection to rats. In the tail flick test, Thr(6)-BK induced anti-nociceptive effects, approximately twice as potent as either morphine or bradykinin also given i.c.v. The anti-nociceptive activity of Thr(6)-BK peaked at 30 min after injection and persisted for 2 h, longer than bradykinin. The primary mode of action of Thr(6)-BK involved the activation of B(2) bradykinin receptors, as anti-nociceptive effects of Thr(6)-BK were antagonized by a selective B(2) receptor antagonist. CONCLUSIONS AND IMPLICATIONS: Our data indicate that Thr(6)-BK acts through B(2) bradykinin receptors in the mammalian CNS, evoking antinociceptive behaviour. This activity is remarkably different from that of bradykinin, despite the structural similarities between both peptides. In addition, due to the increased metabolic stability of Thr(6)-BK, relative to that of bradykinin, this peptide could provide a novel tool in the investigation of kinin pathways involved with pain.


Assuntos
Analgésicos/farmacologia , Bradicinina/análogos & derivados , Dor/tratamento farmacológico , Venenos de Vespas/química , Analgésicos/administração & dosagem , Animais , Bradicinina/administração & dosagem , Bradicinina/isolamento & purificação , Bradicinina/farmacologia , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Injeções Intraventriculares , Sistema Calicreína-Cinina , Masculino , Morfina/administração & dosagem , Morfina/farmacologia , Dor/fisiopatologia , Medição da Dor , Ratos , Ratos Wistar , Receptor B2 da Bradicinina/efeitos dos fármacos , Receptor B2 da Bradicinina/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA