Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30534149

RESUMO

BACKGROUND: L-amino acid oxidases isolated from snake venoms (SV-LAAOs) are enzymes that have great therapeutic potential and are currently being investigated as tools for developing new strategies to treat various diseases, including cancer and bacterial infections. The main objective of this study was to make a brief evaluation of the enzymatic stability of two Bothrops LAAOs, one isolated from Bothrops jararacussu (BjussuLAAO-II) and the other from Bothrops moojeni (BmooLAAO-I) venoms. METHODS AND RESULTS: The enzymatic activity and stability of both LAAOs were evaluated by microplate colorimetric assays, for which BjussuLAAO-II and BmooLAAO-I were incubated with different L-amino acid substrates, in the presence of different ions, and at different pH ranges and temperatures. BjussuLAAO-II and BmooLAAO-I demonstrated higher affinity for hydrophobic amino acids, such as Phe and Leu. The two enzymes showed high enzymatic activity in a wide temperature range, from 25 to 75 °C, and presented optimum pH around 7.0. Additionally, Zn2+, Al3+, Cu2+ and Ni2+ ions negatively modulated the enzymatic activity of both LAAOs. As to stability, BjussuLAAO-II and BmooLAAO-I showed high enzymatic activity for 42 days stored at 4 °C in neutral pH solution. Moreover, the glycan portions of both LAAOs were analyzed by capillary electrophoresis, which revealed that BjussuLAAO-II presented two main glycan portions with relative masses of 7.78 and 8.13 CGU, while BmooLAAO-I showed three portions of 7.58, 7.94 and 8.37 CGU. CONCLUSIONS: Our results showed that, when stored properly, BjussuLAAO-II and BmooLAAO-I present enzymatic stability over a long time period, which is very important to allow the use of these enzymes in pharmacological studies of great impact in the medical field.

2.
Toxins (Basel) ; 10(12)2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487389

RESUMO

Snake venom serine proteases (SVSPs) are enzymes that are capable of interfering in various parts of the blood coagulation cascade, which makes them interesting candidates for the development of new therapeutic drugs. Herein, we isolated and characterized Moojase, a potent coagulant enzyme from Bothrops moojeni snake venom. The toxin was isolated from the crude venom using a two-step chromatographic procedure. Moojase is a glycoprotein with N-linked glycans, molecular mass of 30.3 kDa and acidic character (pI 5.80⁻6.88). Sequencing of Moojase indicated that it is an isoform of Batroxobin. Moojase was able to clot platelet-poor plasma and fibrinogen solutions in a dose-dependent manner, indicating thrombin-like properties. Moojase also rapidly induced the proteolysis of the Aα chains of human fibrinogen, followed by the degradation of the Bß chains after extended periods of incubation, and these effects were inhibited by PMSF, SDS and DTT, but not by benzamidine or EDTA. RP-HPLC analysis of its fibrinogenolysis confirmed the main generation of fibrinopeptide A. Moojase also induced the fibrinolysis of fibrin clots formed in vitro, and the aggregation of washed platelets, as well as significant amidolytic activity on substrates for thrombin, plasma kallikrein, factor Xia, and factor XIIa. Furthermore, thermofluor analyses and the esterase activity of Moojase demonstrated its very high stability at different pH buffers and temperatures. Thus, studies such as this for Moojase should increase knowledge on SVSPs, allowing their bioprospection as valuable prototypes in the development of new drugs, or as biotechnological tools.


Assuntos
Proteínas de Répteis , Serina Proteases , Venenos de Serpentes/enzimologia , Adulto , Animais , Coagulação Sanguínea/efeitos dos fármacos , Bothrops , Estabilidade Enzimática , Feminino , Fibrinogênio/metabolismo , Humanos , Masculino , Agregação Plaquetária/efeitos dos fármacos , Proteínas de Répteis/química , Proteínas de Répteis/isolamento & purificação , Proteínas de Répteis/farmacologia , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/farmacologia , Adulto Jovem
3.
Toxicol Appl Pharmacol ; 357: 50-61, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30145175

RESUMO

Snake venom serine proteases (SVSPs) are commonly described as capable of affecting hemostasis by interacting with several coagulation system components. In this study, we describe the isolation and characterization of BjSP from Bothrops jararaca snake venom, a serine protease with distinctive properties. This enzyme was isolated by three consecutive chromatographic steps and showed acidic character (pI 4.4), molecular mass of 28 kDa and N-carbohydrate content around 10%. Its partial amino acid sequence presented 100% identity to a serine protease cDNA clone previously identified from B. jararaca venom gland, but not yet isolated or characterized. BjSP was significantly inhibited by specific serine protease inhibitors and showed high stability at different pH values and temperatures. The enzyme displayed no effects on washed platelets, but was able to degrade fibrin clots in vitro and also the Aα and Bß chains of fibrinogen differently from thrombin, forming additional fibrinopeptides derived from the Bß chain, which should be related to its inability to coagulate fibrinogen solutions or platelet-poor plasma. In the mapping of catalytic subsites, the protease showed high hydrolytic specificity for tyrosine, especially in subsite S1. Additionally, its amidolytic activity on different chromogenic substrates suggests possible effects on other factors of the coagulation cascade. In conclusion, BjSP is a serine protease that acts nonspecifically on fibrinogen, generating different Bß fibrinopeptides and thus not forming fibrin clots. Its distinguished properties in comparison to most SVSPs stimulate further studies in an attempt to validate its potential as a defibrinogenating agent.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Fibrina/química , Fibrinogênio/metabolismo , Serina Proteases/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Fibrinogênio/química , Humanos , Concentração de Íons de Hidrogênio , Lorazepam , Serina Proteases/química , Adulto Jovem
4.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-984692

RESUMO

L-amino acid oxidases isolated from snake venoms (SV-LAAOs) are enzymes that have great therapeutic potential and are currently being investigated as tools for developing new strategies to treat various diseases, including cancer and bacterial infections. The main objective of this study was to make a brief evaluation of the enzymatic stability of two Bothrops LAAOs, one isolated from Bothrops jararacussu (BjussuLAAO-II) and the other from Bothrops moojeni (BmooLAAO-I) venoms. Methods and results: The enzymatic activity and stability of both LAAOs were evaluated by microplate colorimetric assays, for which BjussuLAAO-II and BmooLAAO-I were incubated with different L-amino acid substrates, in the presence of different ions, and at different pH ranges and temperatures. BjussuLAAO-II and BmooLAAO-I demonstrated higher affinity for hydrophobic amino acids, such as Phe and Leu. The two enzymes showed high enzymatic activity in a wide temperature range, from 25 to 75 °C, and presented optimum pH around 7.0. Additionally, Zn2+, Al3+, Cu2+ and Ni2+ ions negatively modulated the enzymatic activity of both LAAOs. As to stability, BjussuLAAO-II and BmooLAAO-I showed high enzymatic activity for 42 days stored at 4°C in neutral pH solution. Moreover, the glycan portions of both LAAOs were analyzed by capillary electrophoresis, which revealed that BjussuLAAO-II presented two main glycan portions with relative masses of 7.78 and 8.13 CGU, while BmooLAAO-I showed three portions of 7.58, 7.94 and 8.37 CGU. Conclusions: Our results showed that, when stored properly, BjussuLAAO-II and BmooLAAO-I present enzymatic stability over a long time period, which is very important to allow the use of these enzymes in pharmacological studies of great impact in the medical field.(AU)


Assuntos
Animais , Oxirredutases , Polissacarídeos , Venenos de Serpentes , Infecções Bacterianas , Bothrops , Aminoácidos
5.
Int J Biol Macromol ; 103: 25-35, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28495622

RESUMO

A new l-amino acid oxidase (LAAO) from Bothrops jararacussu venom (BjussuLAAO-II) was isolated by using a three-step chromatographic procedure based on molecular exclusion, hydrophobicity, and affinity. BjussuLAAO-II is an acidic enzyme with pI=3.9 and molecular mass=60.36kDa that represents 0.3% of the venom proteins and exhibits high enzymatic activity (4884.53U/mg/mim). We determined part of the primary sequence of BjussuLAAO-II by identifying 96 amino acids, from which 34 compose the N-terminal of the enzyme (ADDRNPLEECFRETDYEEFLEIARNGLSDTDNPK). Multiple alignment of the partial BjussuLAAO-II sequence with LAAOs deposited in the NCBI database revealed high similarity (95-97%) with other LAAOs isolated from Bothrops snake venoms. BjussuLAAO-II exerted a strong antiprotozoal effect against Leishmania amazonensis (IC50=4.56µg/mL) and Trypanosoma cruzi (IC50=4.85µg/mL). This toxin also induced cytotoxicity (IC50=1.80µg/mL) and apoptosis in MCF7 cells (a human breast adenocarcinoma cell line) by activating the intrinsic and extrinsic apoptosis pathways, but were not cytotoxic towards MCF10A cells (a non-tumorigenic human breast epithelial cell line). The results reported herein add important knowledge to the field of Toxinology, especially for the development of new therapeutic agents.


Assuntos
Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Bothrops , Venenos de Crotalídeos/enzimologia , L-Aminoácido Oxidase/isolamento & purificação , L-Aminoácido Oxidase/farmacologia , Sequência de Aminoácidos , Animais , Antiprotozoários/química , Humanos , L-Aminoácido Oxidase/química , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA