Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 236: 113806, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394857

RESUMO

This work aims at improving and disclosing new properties of films based on polylactic acid (PLA) and a star-shaped polycaprolactone (PCL). Indeed, previous works demonstrated that the presence of ad-hoc synthesized PCL, characterized by low molecular weight and carboxyl end groups (coded as PCL-COOH), improves the elongation at break of the films compared to that of neat PLA and increases their functionality. To further improve the properties of the system, alternating layers of chitosan (CH) and DNA were deposited on the surface applying a Layer-by-Layer (LbL) technique. This method was chosen because it allows the properties of the system to be modified without affecting the specific features of the bulk. In addition, the LbL technique is easily scalable and environmentally friendly because it is based on the use of an aqueous solution of two biomaterials, namely DNA and CH, which are not only derived from renewable sources but are also biocompatible and biodegradable. IR measurements on model silicon substrates subjected to the same treatment as the films, pointed out a linear growth of the proposed LbL assembly. Indeed, FE-SEM measurements highlighted the deposition of a uniform coating. The presence of the CH/DNA assembly reduced the oxygen permeability under both dry and humid (50% R.H.) conditions when compared to the uncoated film. In addition, the coating had no relevant effect on the hydrolytic and enzymatic degradation of the system, so that the biodegradability of the film was maintained.


Assuntos
Quitosana , Poliésteres , Polieletrólitos , Poliésteres/química , Quitosana/química , DNA
2.
ACS Appl Mater Interfaces ; 15(50): 58850-58860, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055951

RESUMO

Transparent wood composites (TWs) offer the possibility of unique coloration effects. A colored transparent wood composite (C-TW) with enhanced fire retardancy was impregnated by metal ion solutions, followed by methyl methacrylate (MMA) impregnation and polymerization. Bleached birch wood with a preserved hierarchical structure acted as a host for metal ions. Cobalt, nickel, copper, and iron metal salts were used. The location and distribution of metal ions in C-TW as well as the mechanical performance, optical properties, and fire retardancy were investigated. The C-TW coloration is tunable by controlling the metal ion species and concentration. The metal ions reduced heat release rates and limited the production of smoke during forced combustion tests. The potential for scaled-up production was verified by fabricating samples with a dimension of 180 × 100 × 1 (l × b × h) mm3.

3.
ACS Appl Mater Interfaces ; 15(30): 36811-36821, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467121

RESUMO

New sustainable materials produced by green processing routes are required in order to meet the concepts of circular economy. The replacement of insulating materials comprising flammable synthetic polymers by bio-based materials represents a potential opportunity to achieve this task. In this paper, low-density and flame-retardant (FR) porous fiber networks are prepared by assembling Layer-by-Layer (LbL)-functionalized cellulose fibers by means of freeze-drying. The LbL coating, encompassing chitosan and sodium hexametaphosphate, enables the formation of a self-sustained porous structure by enhancing fiber-fiber interactions during the freeze-drying process. Fiber networks prepared from 3 Bi-Layer (BL)-coated fibers contain 80% wt of cellulose and can easily self-extinguish the flame during flammability tests in vertical configuration while displaying extremely low combustion rates in forced combustion tests. Smoke release is 1 order of magnitude lower than that of commercially available polyurethane foams. Such high FR efficiency is ascribed to the homogeneity of the deposited assembly, which produces a protective exoskeleton at the air/cellulose interface. The results reported in this paper represent an excellent opportunity for the development of fire-safe materials, encompassing natural components where sustainability and performance are maximized.

4.
Polymers (Basel) ; 15(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37112016

RESUMO

A novel polyamidoamine (M-PCASS) bearing a disulfide group and two phosphonate groups per repeat unit was obtained by reacting N,N'-methylenebisacrylamide with a purposely designed bis-sec-amine monomer, namely, tetraethyl(((disulfanediylbis(ethane-2,1-diyl))bis(azanediyl))bis(ethane-2,1-diyl))bis(phosphonate) (PCASS). The aim was to ascertain whether the introduction of phosphonate groups, well-known for inducing cotton charring in the repeat unit of a disulfide-containing PAA, increased its already remarkable flame retardant efficacy for cotton. The performance of M-PCASS was evaluated by different combustion tests, choosing M-CYSS, a polyamidoamine containing a disulfide group but no phosphonate groups, as a benchmark. In horizontal flame spread tests (HFSTs), M-PCASS was a more effective flame retardant than M-CYSS at lower add-ons with no afterglow. In vertical flame spread tests, the only effect was afterglow suppression with no self-extinguishment even at add-ons higher than in HFSTs. In oxygen-consumption cone calorimetry tests, M-PCASS decreased the heat release rate peak of cotton by 16%, the CO2 emission by 50%, and the smoke release by 83%, leaving a 10% residue to be compared with a negligible residue for untreated cotton. Overall, the set of results obtained envisage that the newly synthesized phosphonate-containing PAA M-PCASS may be suitable for specific applications as flame retardant, where smoke suppression or reduction of total gas released is a key requirement.

5.
Molecules ; 27(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431909

RESUMO

Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacrylamido-terminated PAA called AGMA1, obtained by the polyaddition of 4-aminobutylguanidine (agmatine) with 2,2-bis(acrylamido)acetic acid, exhibit excellent cell-adhesion properties both in vitro and in vivo. However, due to their low mechanical strength, AGMA1 hydrogels cannot be sewn to biological tissues and need to be reinforced with fibrous materials. In this work, short silk fibers gave excellent results in this sense, proving capable of establishing covalent bonds with the PAA matrix, thanks to their lysine content, which provided amino groups capable of reacting with the terminal acrylamide groups of the AGMA1 precursor in the final crosslinking phase. Morphological analyses demonstrated that the AGMA1 matrix was intimately interconnected and adherent to the silk fibers, with neither visible holes nor empty volumes. The silk/H-AGMA1 composites were still reversibly swellable in water. In the swollen state, they could be sewn and showed no detachment between fibers and matrix and exhibited significantly improved mechanical properties compared with the plain hydrogels, particularly as regards their Young's modulus and elongation at break.


Assuntos
Hidrogéis , Seda , Seda/química , Hidrogéis/química , Poliaminas/química , Água
6.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236113

RESUMO

The polyelectrolyte (PE)-based water dispersion of graphene-related materials (GRMs) represents an interesting intermediate for the development of advanced materials by sustainable processes. Although the proof of concept has been demonstrated, there is a lack of knowledge for what concerns the effects of parameters typical of PEs such as functionalization, molecular weight, and charge density. In this work, we evaluate the effects of such parameters on the quality and long-term stability of reduced graphite oxide (rGO) dispersion in aqueous media prepared by ultrasound sonication in the presence of different PEs. Four PEs were evaluated: polyacrylic acid (PAA), branched poly(ethylenimine) (BPEI), sodium carboxymethyl cellulose (CMC), and poly(sodium 4-styrenesulfonic acid) (PSS). The prepared dispersions were thoroughly characterized by means of UV-visible spectroscopy, thermogravimetric analysis, dynamic light scattering, and Raman spectroscopy. The highest concentrations of rGO were achieved by BPEI with a molecular weight of 25,000 and 270,000 Da (33 and 26 µg/mL, respectively). For other PEs, the rGO concentration was found to be independent of the molecular weight. The PAA-based dispersions displayed the best through-time stability while yielding homogeneous dispersion with a smaller average size and narrower size distribution.

7.
Adv Mater ; 34(38): e2204800, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35906189

RESUMO

Metal-organic frameworks (MOFs) are hybrid porous crystalline networks with tunable chemical and structural properties. However, their excellent potential is limited in practical applications by their hard-to-shape powder form, making it challenging to assemble MOFs into macroscopic composites with mechanical integrity. While a binder matrix enables hybrid materials, such materials have a limited MOF content and thus limited functionality. To overcome this challenge, nanoMOFs are combined with tailored same-charge high-aspect-ratio cellulose nanofibrils (CNFs) to manufacture robust, wet-stable, and multifunctional MOF-based aerogels with 90 wt% nanoMOF loading. The porous aerogel architectures show excellent potential for practical applications such as efficient water purification, CO2 and CH4 gas adsorption and separation, and fire-safe insulation. Moreover, a one-step carbonization process enables these aerogels as effective structural energy-storage electrodes. This work exhibits the unique ability of high-aspect-ratio CNFs to bind large amounts of nanoMOFs in structured materials with outstanding mechanical integrity-a quality that is preserved even after carbonization. The demonstrated process is simple and fully discloses the intrinsic potential of the nanoMOFs, resulting in synergetic properties not found in the components alone, thus paving the way for MOFs in macroscopic multifunctional composites.

8.
Carbohydr Polym ; 279: 119004, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980351

RESUMO

Nanocomposites based on components from nature, which can be recycled are of great interest in new materials for sustainable development. The range of properties of nacre-inspired hybrids of 1D cellulose and 2D clay platelets are investigated in nanocomposites with improved nanoparticle dispersion in the starting hydrocolloid mixture. Films with a wide range of compositions are prepared by capillary force assisted physical assembly (vacuum-assisted filtration) of TEMPO-oxidized cellulose nanofibers (TOCN) reinforced by exfoliated nanoclays of three different aspect ratios: saponite, montmorillonite and mica. X-ray diffraction and transmission electron micrographs show almost monolayer dispersion of saponite and montmorillonite and high orientation parallel to the film surface. Films exhibit ultimate strength up to 573 MPa. Young's modulus exceeds 38 GPa even at high MTM contents (40-80 vol%). Optical transmittance, UV-shielding, thermal shielding and fire-retardant properties are measured, found to be very good and are sensitive to the 2D nanoplatelet dispersion.


Assuntos
Celulose/química , Retardadores de Chama , Nanocompostos/química , Nanofibras/química , Silicatos/química , Óxidos N-Cíclicos/química , Módulo de Elasticidade , Reciclagem , Resistência à Tração
9.
Polymers (Basel) ; 13(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960933

RESUMO

Linear polyamidoamines (PAAs) derived from the polyaddition of natural α-amino acids and N,N'-methylene bis(acrylamide) are intumescent flame retardants for cotton. Among them, the glycine-derived M-GLY extinguished the flame in horizontal flame spread tests at 4% by weight add-on. This paper reports on an extensive study aimed at understanding the molecular-level transformations of M-GLY-treated cotton upon heating in air at 300 °C, 350 °C and 420 °C. Thermogravimetric analysis (TGA) identified different thermal-oxidative decomposition stages and, coupled to Fourier transform infrared spectroscopy, allowed the volatile species released upon heating to be determined, revealing differences in the decomposition pattern of treated and untreated cotton. XPS analysis of the char residues of M-GLY-treated cotton revealed the formation of aromatic nanographitic char at lower temperature with respect to untreated cotton. Raman spectroscopy of the char residues provided indications on the degree of graphitization of treated and untreated cotton at the three reference temperatures. Solid state 13C nuclear magnetic resonance spectroscopy (NMR) provided information on the char structure as a function of the treatment temperature, clearly indicating that M-GLY favors the carbonization of cotton with the formation of more highly condensed aromatic structures.

10.
Pharmaceutics ; 13(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834366

RESUMO

In the field of bone regeneration, considerable attention has been addressed towards the use of mesoporous bioactive glasses (MBGs), as multifunctional therapeutic platforms for advanced medical devices. In fact, their extremely high exposed surface area and pore volume allow to load and the release of several drugs, while their framework can be enriched with specific therapeutic ions allowing to boost the tissue regeneration. However, due to the open and easily accessible mesopore structure of MBG, the release of the incorporated therapeutic molecules shows an initial burst effect leading to unsuitable release kinetics. Hence, a still open challenge in the design of drug delivery systems based on MBGs is the control of their release behavior. In this work, Layer-by-layer (LbL) deposition of polyelectrolyte multi-layers was exploited as a powerful and versatile technique for coating the surface of Cu-substituted MBG nanoparticles with innovative multifunctional drug delivery systems for co-releasing of therapeutic copper ions (exerting pro-angiogenic and anti-bacterial effects) and an anti-inflammatory drug (ibuprofen). Two different routes were investigated: in the first strategy, chitosan and alginate were assembled by forming the multi-layered surface, and, successively, ibuprofen was loaded by incipient wetness impregnation, while in the second approach, alginate was replaced by ibuprofen, introduced as polyelectrolyte layer. Zeta-potential, TGA and FT-IR spectroscopy were measured after the addition of each polyelectrolyte layer, confirming the occurrence of the stepwise deposition. In addition, the in vitro bioactivity and the ability to modulate the release of the cargo were evaluated. The polyelectrolyte coated-MBGs were proved to retain the peculiar ability to induce hydroxyapatite formation after 7 days of soaking in Simulated Body Fluid. Both copper ions and ibuprofen were co-released over time, showing a sustained release profile up to 14 days and 24 h, respectively, with a significantly lower burst release compared to the bare MBG particles.

11.
Polymers (Basel) ; 13(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771271

RESUMO

In this paper, bioinspired polyamidoamines (PAAs) were synthesized from N,N'-methylenebisacrylamide and nine natural α-amino acids: L-alanine, L-valine, L-leucine (M-LEU), L-histidine, L-serine, L-asparagine, L-glutamine (M-GLN), L-aspartic acid and L-glutamic acid (M-GLU) and their performance as flame retardants (FRs) for cotton were determined. The aim was to ascertain if the ability to protect cotton from fire by the process of intumescing, previously found for the glycine-derived M-GLY, was a general feature of α-amino acid-derived PAAs. None of the PAAs ignited by flame impingement, apart from M-LEU, which burned for a few seconds leaving 93% of residue. All of them formed carbon- and oxygen-rich, porous chars with a graphitic structure in the air at 350 °C, as revealed by X-ray photoelectron spectroscopy. All samples were tested as FRs for cotton by horizontal flame spread tests. At a 5% add-on, M-GLU and M-GLN extinguished the flame. The same results were obtained with all the other PAAs at a 7% add-on. The α-amino acid residues influenced the FR performance. The most effective were those that, by heating, were most suitable for producing thermally stable cyclic aromatic structures. All PAA-treated cotton samples, even when burning, left significant residues, which, according to scanning electron microscopy analysis, maintained the original cotton texture.

12.
Materials (Basel) ; 14(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34832247

RESUMO

During the past 50 years, the aim to reduce the eddy current losses in magnetic cores to a minimum led to the formulation of new materials starting from electrically insulated iron powders, today called Soft Magnetic Composites (SMC). Nowadays, this promising branch of materials is still held back by the mandatory tradeoff between energetic, electrical, magnetic, and mechanical performances. In most cases, the research activity focuses on the deposition of an insulating/binding layer, being one of the critical points in optimizing the final composite. This insulation usually is achieved by either inorganic or organic layer constituents. The main difference is the temperature limit since most inorganic materials typically withstand higher treatment temperatures. As a result, the literature shows many materials and process approaches, each one designed to meet a specific application. The present work summarizes the recent advances in state of the art, analyzing the relationship among material compositions and magnetic and mechanical properties. Each coating shows its own processing sets, which vary from simple mechanical mixing to advanced chemical methods to metallurgical treatments. From state of the art, Aluminum coatings are characterized by higher current losses and low mechanical properties. In contrast, higher mechanical properties are obtained by adopting Silicon coatings. The phosphates coatings show the best-balanced overall properties. Each coating type was thoroughly investigated and then compared with the literature background highlighting. The present paper thus represents a critical overview of the topic that could serve as a starting point for the design and development of new and high-performing coating solutions for SMCs. However, global research activity continuously refines the recipes, introducing new layer materials. The following steps and advances will determine whetherthese materials breakthrough in the market.

13.
ACS Appl Mater Interfaces ; 13(36): 43301-43313, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474558

RESUMO

Dispersion of graphene and related materials in water is needed to enable sustainable processing of these 2D materials. In this work, we demonstrate the capability of branched polyethylenimine (BPEI) and polyacrylic acid (PAA) to stabilize reduced graphite oxide (rGO) dispersions in water. Atomic force microscopy colloidal probe measurements were carried out to investigate the interaction mechanisms between rGO and the polyelectrolytes (PEs). Our results show that for positive PEs, the interaction appears electrostatic, originating from the weak negative charge of graphene in water. For negative PEs, however, van der Waals forces may result in the formation of a PE shell on rGO. The PE-stabilized rGO dispersions were then used for the preparation of coatings to enhance gas barrier properties of polyethylene terephthalate films using the layer-by-layer self-assembly. Ten bilayers of rGOBPEI/rGOPAA resulted in coatings with excellent barrier properties as demonstrated by oxygen transmission rates below detection limits [<0.005 cm3/(m2 day atm)]. The observed excellent performance is ascribed to both the high density of the deposited coating and its efficient stratification. These results can enable the design of highly efficient gas barrier solutions for demanding applications, including oxygen-sensitive pharmaceutical products or flexible electronic devices.

14.
Carbohydr Polym ; 271: 118420, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364561

RESUMO

In this work, novel composite microparticles based on chitosan (CHI) and graphite nanoplatelets (GNP) were developed as 3D scaffolds for neuronal cells. The aim is to improve the scaffold strength while maintaining its ability to sustain cell adhesion and differentiation. An air-assisted jetting technique followed by physical crosslinking is employed to obtain CHI/GNP microparticles. Optical and Field Emission Scanning Electron Microscopy micrographs showed a uniform distribution of GNP within the CHI porous matrix. The presence of GNP turned out to improve the strength of the microparticles while conferring good electrical conductivity and ameliorating their stability in aqueous environment. The morphological and immunocytochemical characterization, combined with a preliminary electrophysiological analysis, evidenced the effectiveness of the developed composite microparticles as a scaffold for neuron growth. These scaffolds could be employed for the development of advanced 3D neuronal in vitro models for networks dynamics analysis and drug screening.


Assuntos
Quitosana/química , Grafite/química , Hidrogéis/química , Nanoestruturas/química , Neurônios/efeitos dos fármacos , Alicerces Teciduais/química , Módulo de Elasticidade , Condutividade Elétrica , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Engenharia Tecidual/métodos
15.
Nanomaterials (Basel) ; 11(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498492

RESUMO

The exploitation of self-assembled coatings comprising graphite oxide (GO) nanoplates has been recently demonstrated as a promising route to improve the fire safety of flexible polyurethane (PU) foams. However, limited knowledge has been gathered on the correlations between the physical and chemical properties of different GO grades and the performance obtained in this application. This work addresses the effects of the nanoparticle dimensions on the layer-by-layer (LbL) assembly and flame-retardant properties of GO-based coatings deposited on PU foams. To this aim, three GO bearing different lateral sizes and thicknesses were selected and LbL-assembled with chitosan (CHIT). Coating growth and morphology were evaluated by FTIR and FESEM, respectively. The resulting CHIT/GO assemblies were demonstrated to be capable of slowing down the combustion of the PU both in flammability and forced combustion tests. In addition, compressive stress/strain tests pointed out that the LbL-coated foams (22-24 kg/m3) could easily replace denser commercial PU foam (40-50 kg/m3) with weight reduction potentials in the transport field. These results are correlated with the properties of the employed GO. The production of assemblies characterized by a high density of CHIT/GO interfaces is identified as the main parameter controlling the FR efficiency and the mechanical properties of the coatings.

16.
Carbohydr Polym ; 255: 117468, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33436236

RESUMO

Layer-by-Layer (LbL) assembled nanocoatings are exploited to impart flame-retardant properties to cellulosic substrates. A model cellulose material can make it possible to investigate an optimal bilayer (BL) range for the deposition of coating while elucidating the main flame-retardant action thus allowing for an efficient design of optimized LbL formulations. Model cellulose gel beads were prepared by dissolving cellulose-rich fibers followed by precipitation. The beads were LbL-treated with chitosan (CH) and sodium hexametaphosphate (SHMP). The char forming properties were studied using thermal gravimetric analysis. The coating increased the char yield in nitrogen to up to 29 % and showed a distinct pattern of micro intumescent behavior upon heating. An optimal range of 10-20 BL is observed. The well-defined model cellulose gel beads hence introduce a new scientific route both to clarify the fundamental effects of different film components and to optimize the composition of the films.

17.
Colloids Surf B Biointerfaces ; 196: 111295, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32768984

RESUMO

This manuscript reports the development of functional 3D scaffolds based on chitosan (CHI) and graphite oxide nanoplatelets (GO) for neuronal network growth. To this aim, CHI microparticles, produced by alkaline gelation method, were coated with GO exploiting a simple template-assisted assembly based on the electrostatic attraction in an aqueous medium. The optimal deposition conditions were evaluated by optical microscopy and studied by quartz crystal microbalance. FE-SEM observations highlight the formation of a core-shell structure where the porous chitosan core is completely wrapped by a uniform GO layer. This outer shell protects the inner chitosan from enzymatic degradation thus potentially extending the scaffold viability for in vivo applications. The presence of hydrophilic oxygen-containing functionalities on the outermost layer of GO and its inner conductive graphitic core maintained the bioactivity of the scaffold and promoted neuronal cell adhesion and growth. The proposed approach to modify the surface of CHI microparticles makes it possible for the design of 3D scaffolds for advanced neuronal tissue engineering applications.


Assuntos
Quitosana , Grafite , Óxidos , Engenharia Tecidual , Alicerces Teciduais
18.
Carbohydr Polym ; 230: 115616, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887896

RESUMO

Wood-based cellulose fibers were used to prepare porous, low density and wet-stable fiber networks (FN). Multilayer coatings consisting of chitosan (CH), sodium hexametaphosphate (SHMP) and inorganic nanoparticles comprising of either sodium montmorillonite (MMT), sepiolite (SEP) or colloidal silica (SNP) were deposited by the layer-by-layer (LbL) technique onto FNs in an effort to impart flame-retardancy. A simulated fire scenario measured by cone calorimetry showed that five quadlayers (QL) of CH/SHMP/CH/MMT, CH/SHMP/CH/SEP and CH/SHMP/CH/SNP can produce significant reduction in peak heat release rate (pkHRR). In detail, the coating containing SEP showed the largest reduction of the pkHRR by 47% relative to the uncoated FN. MMT and SEP coated FNs were also able to self-extinguish fire and to retain their shapes after direct exposure to a methane flame. This study hence shows that the LbL assembly is a highly effective way to impart flame-retardant properties to this new type of porous FN.

19.
J Mater Chem A Mater ; 8(34): 17608-17620, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-33796318

RESUMO

Nanocomposites from native cellulose with low 2D nanoplatelet content are of interest as sustainable materials combining functional and structural performance. Cellulose nanofibril-graphene oxide (CNF-GO) nanocomposite films are prepared by a physical mixing-drying method, with focus on low GO content, the use of very large GO platelets (2-45µm) and nanostructural characterization using synchrotron x-ray source for WAXS and SAXS. These nanocomposites can be used as transparent coatings, strong films or membranes, as gas barriers or in laminated form. CNF nanofibrils with random in-plane orientation, form a continuous non-porous matrix with GO platelets oriented in-plane. GO reinforcement mechanisms in CNF are investigated, and relationships between nanostructure and suspension rheology, mechanical properties, optical transmittance and oxygen barrier properties are investigated as a function of GO content. A much higher modulus reinforcement efficency is observed than in previous polymer-GO studies. The absolute values for modulus and ultimate strength are as high as 17 GPa and 250 MPa at a GO content as small as 0.07 vol%. The remarkable reinforcement efficiency is due to improved organization of the CNF matrix; and this GO-induced mechanism is of general interest for nanostructural tailoring of CNF-2D nanoplatelet composites.

20.
Polymers (Basel) ; 11(11)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752336

RESUMO

The polyamidoamine derived from N,N'-methylenebisacrylamide (M) and glycine (G), M-G, has been shown to be an effective flame-retardant (FR) for cotton in horizontal flame spread tests (HFST), extinguishing the flame at 5% add-on. Its activity was attributed to its intrinsic intumescence. In vertical flame spread tests (VFST), M-G failed to extinguish the flame even at 30% add-on. Conversely, in VFST, the polyamidoamine derived from M and cystine (C), M-C, inhibited cotton combustion at 16% add-on, but in HFST failed to extinguish the flame below 12% add-on. Its activity was ascribed to the release of sulfur-containing volatiles acting as radical scavengers. In this work, the FR effectiveness of M-Gm-Cn copolymers with different G/C ratio was compared with that of the M-G and M-C homopolymers and of M-G/M-C blends of the same compositions. In HFST, both copolymers and blends extinguished the flame. In particular, M-G50-C50 and (M-G/M-C)50/50 extinguished the flame, even at 7% add-on. In VFST, the copolymers with ≥50% M-C units, similar to M-C, inhibited cotton combustion at 16% add-on. At the same add-on, the M-G/M-C blends failed to extinguish the flame. It may be concluded that, in contrast to blends, copolymers combined the merits of both homopolymers in all tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA