Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 15(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740572

RESUMO

Iron is accumulated symplastically in kelp in a non-ferritin core that seems to be a general feature of brown algae. Microprobe studies show that Fe binding depends on tissue type. The sea is generally an iron-poor environment and brown algae were recognized in recent years for having a unique, ferritin-free iron storage system. Kelp (Laminaria digitata) and the filamentous brown alga Ectocarpus siliculosus were investigated using X-ray microprobe imaging and nanoprobe X-ray fluorescence tomography to explore the localization of iron, arsenic, strontium, and zinc, and micro-X-ray absorption near-edge structure (µXANES) to study Fe binding. Fe distribution in frozen hydrated environmental samples of both algae shows higher accumulation in the cortex with symplastic subcellular localization. This should be seen in the context of recent ultrastructural insight by cryofixation-freeze substitution that found a new type of cisternae that may have a storage function but differs from the apoplastic Fe accumulation found by conventional chemical fixation. Zn distribution co-localizes with Fe in E. siliculosus, whereas it is chiefly located in the L. digitata medulla, which is similar to As and Sr. Both As and Sr are mostly found at the cell wall of both algae. XANES spectra indicate that Fe in L. digitata is stored in a mineral non-ferritin core, due to the lack of ferritin-encoding genes. We show that the L. digitata cortex contains mostly a ferritin-like mineral, while the meristoderm may include an additional component.


Assuntos
Kelp , Laminaria , Phaeophyceae , Oligoelementos , Kelp/metabolismo , Laminaria/metabolismo , Raios X , Síncrotrons , Phaeophyceae/metabolismo , Oligoelementos/metabolismo , Ferro/metabolismo , Ferritinas/metabolismo , Minerais/metabolismo
2.
Biometals ; 36(2): 371-383, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36930341

RESUMO

Iron is a vital although biologically inaccessible trace nutrient for nearly all forms of life but "free" iron can be deleterious to cells and thus iron uptake and storage must be carefully controlled. The marine environment is particularly iron poor making mechanisms for its uptake and storage even more imperative. In this brief review we explore the known and potential iron uptake and storage pathways for the biologically and economically important marine brown macroalgae (seaweeds/kelps).


Assuntos
Phaeophyceae , Oligoelementos , Ferro/metabolismo , Phaeophyceae/metabolismo , Transporte Biológico , Oligoelementos/metabolismo
3.
Biometals ; 35(1): 39-51, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716889

RESUMO

The dinoflagellate Alexandrium catenella is a well-known paralytic shellfish toxin producer that forms harmful algal blooms (HABs) worldwide. Blooms of this species have repeatedly brought severe ecological and economic impacts to Chile, especially in the southern region, where the shellfish and salmon industries are world-famous. The mechanisms of such HABs have been intensively studied but are still unclear. Nutrient overloading is one of the often-discussed drivers for HABs. The present study used the A. catenella strain isolated from southern Chile to investigate how iron conditions could affect their growth and toxin production as related to HAB. Our results showed that an optimum concentration of iron was pivotal for proper A. catenella growth. Thus, while excess iron exerted a toxic effect, low iron media led to iron insufficiency and growth inhibition. In addition, the study shows that the degree of paralytic shellfish toxin production by A. catenella varied depending on the iron concentration in the culture media. The A. catenella strain from southern Chile produced GTX1-4 exclusively in the fmol cell-1 scale. Based on these findings, we suggest that including iron and paralytic shellfish toxin measurements in the fields can improve the current HAB monitoring and contribute to an understanding of A. catenella bloom dynamics in Chile.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Chile , Proliferação Nociva de Algas , Humanos , Ferro , Frutos do Mar/análise
4.
J Inorg Biochem ; 221: 111457, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34010741

RESUMO

It is well known that bacteria and fungi have evolved sophisticated systems for acquiring the abundant but biologically inaccessible trace element iron. These systems are based on high affinity Fe(III)-specific binding compounds called siderophores which function to acquire, transport, and process this essential metal ion. Many hundreds of siderophores are now known and their numbers continue to grow. Extensive studies of their isolation, structure, transport, and molecular genetics have been undertaken in the last three decades and have been comprehensively reviewed many times. In this review we focus on a unique subset of siderophores that has only been recognized in the last 20 years, namely those whose iron complexes display photoactivity. This photoactivity, which typically results in the photooxidation of the siderophore ligand with concomitant reduction of Fe(III) to Fe(II), seemingly upsets the siderophore paradigm of forming and transporting only extremely stable Fe(III) complexes into microbial cells. Here we review their structure, synthesis, photochemistry, photoproduct coordination chemistry and explore the potential biological and ecological consequences of this photoactivity.


Assuntos
Sideróforos/química , Bactérias/química , Complexos de Coordenação/química , Complexos de Coordenação/efeitos da radiação , Fungos/química , Ferro/química , Luz , Estrutura Molecular , Oxirredução/efeitos da radiação , Sideróforos/biossíntese , Sideróforos/efeitos da radiação
5.
Microorganisms ; 9(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466273

RESUMO

Bacteria from the genus Marinobacter are ubiquitous throughout the worlds' oceans as "opportunitrophs" capable of surviving a wide range of conditions, including colonization of surfaces of marine snow and algae. To prevent too many bacteria from occupying this ecological niche simultaneously, some sort of population dependent control must be operative. Here, we show that while Marinobacter do not produce or utilize an acylhomoserine lactone (AHL)-based quorum sensing system, "sibling" colonies of many species of Marinobacter exhibit a form of non-lethal chemical communication that prevents colonies from overrunning each other's niche space. Evidence suggests that this inhibition is the result of a loss in motility for cells at the colony interfaces. Although not the signal itself, we have identified a protein, glycerophosphoryl diester phosphodiesterase, that is enriched in the inhibition zone between the spreading colonies that may be part of the overall response.

6.
Metallomics ; 11(4): 756-764, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30834917

RESUMO

Brown algae include the strongest accumulators of iodine known among living systems. This paper reviews the current state of bioinorganic research in the field, focusing on the models Laminaria digitata, Macrocystis pyrifera and Ectocarpus siliculosus, and covering uptake and efflux, localization and biological significance of storage, as well as marine and atmospheric chemistry of iodine.


Assuntos
Iodo/metabolismo , Laminaria/metabolismo , Macrocystis/metabolismo , Phaeophyceae/metabolismo , Transporte Biológico , Imunidade Inata , Iodo/imunologia , Laminaria/imunologia , Macrocystis/imunologia , Estresse Oxidativo , Phaeophyceae/imunologia
7.
Biometals ; 32(1): 139-154, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30623317

RESUMO

Phytoplankton blooms can cause acute effects on marine ecosystems due either to their production of endogenous toxins or to their enormous biomass leading to major impacts on local economies and public health. Despite years of effort, the causes of these Harmful Algal Blooms are still not fully understood. Our hypothesis is that bacteria that produce photoactive siderophores may provide a bioavailable source of iron for phytoplankton which could in turn stimulate algal growth and support bloom dynamics. Here we correlate iron concentrations, phytoplankton cell counts, bacterial cell abundance, and copy numbers for a photoactive siderophore vibrioferrin biosynthesis gene in water samples taken from 2017 cruises in the Gulf of California, and the Pacific Ocean off the coast of northern Baja California as well as during a multiyear sampling at Scripps Pier in San Diego, CA. We find that bacteria producing the photoactive siderophore vibrioferrin, make up a surprisingly high percentage of total bacteria in Pacific/Gulf of California coastal waters (up to 9%). Vibroferrin's unique properties and the widespread prevalence of its bacterial producers suggest that it may contribute significantly to generating bioavailability of iron via photoredox reactions.


Assuntos
Citratos/biossíntese , Ferro/metabolismo , Marinobacter/química , Sideróforos/biossíntese , California , Citratos/química , Ferro/química , Marinobacter/metabolismo , México , Pirrolidinonas/química , Sideróforos/química
8.
J Biol Inorg Chem ; 23(7): 1119-1128, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29523971

RESUMO

This study explores key features of bromine and iodine metabolism in the filamentous brown alga and genomics model Ectocarpus siliculosus. Both elements are accumulated in Ectocarpus, albeit at much lower concentration factors (2-3 orders of magnitude for iodine, and < 1 order of magnitude for bromine) than e.g. in the kelp Laminaria digitata. Iodide competitively reduces the accumulation of bromide. Both iodide and bromide are accumulated in the cell wall (apoplast) of Ectocarpus, with minor amounts of bromine also detectable in the cytosol. Ectocarpus emits a range of volatile halogenated compounds, the most prominent of which by far is methyl iodide. Interestingly, biosynthesis of this compound cannot be accounted for by vanadium haloperoxidase since the latter have not been found to catalyze direct halogenation of an unactivated methyl group or hydrocarbon so a methyl halide transferase-type production mechanism is proposed.


Assuntos
Bromo/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Iodo/metabolismo , Phaeophyceae/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Bromo/química , Halogenação , Hidrocarbonetos Halogenados/química , Iodo/química , Phaeophyceae/química , Phaeophyceae/citologia , Compostos Orgânicos Voláteis/química
9.
PLoS One ; 12(12): e0189559, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29216296

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0180755.].

10.
Biometals ; 30(6): 945-953, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29067573

RESUMO

The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies being distinguished: Strategy I involves the induction of an Fe(III)-chelate reductase (ferrireductase) along with Fe(II) or Fe(III) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine, plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the harmful algal bloom dinoflagellate Lingulodinium polyedrum. L. polyedrum is an armored dinoflagellate with a mixotrophic lifestyle and one of the most common bloom species on Southern California coast widely noted for its bioluminescent properties and as a producer of yessotoxins. Short term radio-iron uptake studies indicate that iron is taken up by L. polyedrum in a time dependent manner consistent with an active transport process. Based on inhibitor and other studies it appears that a reductive-oxidative pathway such as that found in yeast and the green alga Chlamydomonas reinhardtii is likely. Of the various iron sources tested vibrioferrin, a photoactive and relatively weak siderophore produced by potentially mutualistic Marinobacter bacterial species, was the most efficient. Other more stable and non-photoactive siderophores such as ferrioxamine E were ineffective. Several pieces of data including long term exposure to 57Fe using Mössbauer spectroscopy suggest that L. polyedrum does not possess an iron storage system but rather presumably relies on an efficient iron uptake system, perhaps mediated by mutualistic interactions with bacteria.


Assuntos
Dinoflagellida/metabolismo , Ferro/metabolismo , Citratos/metabolismo , Dinoflagellida/crescimento & desenvolvimento , Eutrofização , Ferro/farmacocinética , Oxirredução , Pirrolidinonas/metabolismo , Sideróforos/metabolismo , Espectroscopia de Mossbauer
11.
J Inorg Biochem ; 177: 82-88, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28926758

RESUMO

Despite its paramount role in the functioning of coastal ecosystems, relatively little is known about halogen metabolism in giant kelp (Macrocystis pyrifera). This is an important shortcoming given the potential implications for marine and atmospheric chemical processes in the wide distribution range of Macrocystis. The work presented here constitutes the first in depth investigation of the uptake, efflux, and of the physiological function of iodide in this important kelp species. Iodide uptake and efflux rates were measured in adult sporophytes of Macrocystis under normal and stressed (exogenous hydrogen peroxide and an elicitor-triggered oxidative burst) conditions. Kelp tissue took up iodide according to Michaelis-Menten type kinetics when incubated in seawater enriched with various concentrations of iodide. Upon the addition of exogenous hydrogen peroxide, simulating oxidative stress, a marked efflux of iodide occurred. In situ generation of hydrogen peroxide was elicited in Macrocystis upon the addition of oligomeric degradation products of alginate as well as arachidonic acid and methyl jasmonate constituting a defensive oxidative burst that could be linked to iodine accumulation. H2O2 was detected at the single cell level using dichlorohydrofluorescein diacetate, a fluorogenic probe capable of detecting intracellular H2O2. When assayed for vanadium haloperoxidase activity, several bromoperoxidase isoforms were detected as well as a single iodoperoxidase. Altogether, the results of this study show that Macrocystis has an elaborate iodine metabolism, which is likely significant for impacting iodine speciation in seawater around kelp beds and for volatile halogen emissions into the coastal atmosphere.


Assuntos
Iodetos/metabolismo , Iodo/metabolismo , Kelp/metabolismo , Macrocystis/metabolismo , Acetatos/metabolismo , Ácido Araquidônico/metabolismo , Ciclopentanos/metabolismo , Peróxido de Hidrogênio/metabolismo , Iodeto Peroxidase/metabolismo , Iodo/análise , Isoenzimas/metabolismo , Estresse Oxidativo , Oxilipinas/metabolismo , Peroxidases/metabolismo
12.
Inorg Chem ; 56(19): 11524-11531, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28914533

RESUMO

While polycarboxylates and hydroxyl-acid complexes have long been known to be photoactive, simple carboxylate complexes which lack a significant LMCT band are not typically strongly photoactive. Hence, it was somewhat surprising that a series of reports demonstrated that materials synthesized from iron(III) and polysaccharides such as alginate (poly[guluronan-co-mannuronan]) or pectate (poly[galacturonan]) formed photoresponsive materials that convert from hydrogels to sols under the influence of visible light. These materials have numerous potential applications in areas such as photopatternable materials, materials for controlled drug delivery, and tissue engineering. Despite the near-identity of the functional units in the polysaccharide ligands, the reactivity of iron(III) hydrogels can depend on the configuration of some chiral centers in the sugar units and in the case of alginate the guluronate to mannuronate block composition, as well as pH. Here, using temperature- and field-dependent transmission Mössbauer spectroscopy, we show that the dominant iron compound detected for both the alginate and pectate gels displays features typical of a polymeric (Fe3+O6) system. The Mössbauer spectra of such systems are strongly dependent on temperature, field, size, and crystallinity, indicative of superparamagnetic relaxation of magnetically ordered nanoparticles. Pectate and alginate hydrogels differ in the size distribution of the iron oxyhydroxy nanoparticles, suggesting that in general smaller nanoparticles are more reactive. Potential biological implications of these results are also discussed.


Assuntos
Alginatos/química , Complexos de Coordenação/química , Compostos de Ferro/química , Nanopartículas/química , Pectinas/química , Hidrogéis , Luz , Fenômenos Magnéticos , Tamanho da Partícula , Espectroscopia de Mossbauer
13.
PLoS One ; 12(8): e0180755, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28800586

RESUMO

Kelps have a major role in marine and atmospheric iodine cycling in the coastal zone of temperate regions, with potential wide-ranging impacts on ozone destruction in the coastal marine boundary layer. However, little is known about the impact of kelp forests on iodine speciation in coastal sea water. To address this, we examined iodide and iodate concentrations in seawater in and around a giant kelp forest near San Diego, CA, USA, and a nearby site that was not influenced by kelp biology. Our data shows that while both iodide and iodate concentrations remained unchanged during the year at the nearby site, these concentrations changed significantly in and around the kelp forest, and were strongly related to changes in kelp canopy biomass. In particular, iodide reached its highest concentration and iodate reached its lowest concentration during the summer when the kelp canopies were near their maximum, while the opposite pattern was observed during the winter and spring when the kelp canopies were near their minimum. Further, comparisons of these changes with corresponding changes in seawater temperature and wind speed indicated that these relationships were relatively small compared to those with changes in kelp biomass. Together, our data show a strong relationship between kelp biomass and iodine metabolism.


Assuntos
Iodo/análise , Kelp/química , Água do Mar/química , Análise de Variância , Biomassa , California , Iodatos/análise , Iodetos/análise , Estações do Ano
14.
Metallomics ; 8(5): 551, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27123807

RESUMO

Correction for 'Surface binding, localization and storage of iron in the giant kelp Macrocystis pyrifera' by Eric P. Miller et al., Metallomics, 2016, 8, 403-411.

15.
Metallomics ; 8(4): 403-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27009567

RESUMO

Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. Although the iron uptake and storage mechanisms of terrestrial/higher plants have been well-studied, the corresponding systems in marine algae have received far less attention. While the iron many marine algae take up from the environment, irrespective of its detailed internalization mechanism, arrives at the cell surface by diffusion, there is growing evidence for more "active" means of concentrating this element prior to uptake. It has been well established in both laboratory and environmentally derived samples, that a large amount of iron can be "non-specifically" adsorbed to the surface of marine algae. While this phenomenon is widely recognized and has prompted the development of experimental protocols to eliminate its contribution to iron uptake studies, its potential biological significance as a concentrated iron storage source for marine algae is only now being recognized. In this study, using an interdisciplinary array of techniques, we show that the giant kelp Macrocystis pyrifera also displays significant cell surface bound iron although less than that seen with the related brown alga Ectocarpus siliculosus. The iron on the surface is likely bound to carboxylate groups and once inside the iron is found to localize differently depending on cell type. Iron appears to be stored in an as yet undefined mineral phase.


Assuntos
Membrana Celular/metabolismo , Ferro/metabolismo , Macrocystis/metabolismo , 3,3'-Diaminobenzidina/metabolismo , Azóis/metabolismo , Fluorescência , Espaço Intracelular/metabolismo , Cinética , Espectroscopia de Mossbauer , Termodinâmica
16.
Metallomics ; 8(2): 161-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26679972

RESUMO

In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.


Assuntos
Boro , Phaeophyceae , Boro/análise , Boro/metabolismo , Microscopia , Phaeophyceae/citologia , Phaeophyceae/metabolismo , Phaeophyceae/fisiologia
17.
Biometals ; 28(1): 197-206, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25528647

RESUMO

Full length recombinant iron regulatory protein, Fur, has been isolated and characterized from the algal-associated marine bacterium Marinobacter algicola DG893. Under nondenaturing conditions the Fur protein behaves on size exclusion chromatography as a dimer while it is monomeric under SDS PAGE conditions. ICP-MS and fluorescence quenching experiments show that Mb-Fur binds a single metal ion (Zn, Mn, or Co) per monomer. Electrophoretic mobility shift assays were used to probe the interaction of Mb-Fur with the purported Fur box in the promoter region upstream of the vibrioferrin biosynthetic operon. Interaction of Mb-Fur with a 100 bp DNA fragment containing the Fur box in the presence of 10 µM Mn, Co or Zn(II) resulted in decreased migration of DNA on a 7.5% polyacrylamide gel. In the absence of the Fur protein or the metal, no interaction is seen. The presence of EDTA in the binding, loading or running buffers also abolished all activity demonstrating the importance of the metal in formation of the promoter-repressor complex. Based on a high degree of similarity between Mb-Fur and its homolog from Pseudomonas aeruginosa (PA) whose X-ray structure is known we developed a structural model for the former which suggested that only one of the several metal binding sites found in other Fur's would be functional. This is consistent with the single metal binding stoichiometry we observed. Since the purported metal binding site was one that has been described as "structural" rather than "functional" in PA and yet the monometallic Mb-Fur retains DNA Fur box binding ability it reopens the question of which site is which, or if different species have adapted the sites for different purposes.


Assuntos
Proteínas de Bactérias/metabolismo , Marinobacter/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Ligação Proteica
18.
Metallomics ; 6(6): 1156-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24760287

RESUMO

Evidence is increasing for a mutualistic relationship between phytoplankton and heterotrophic marine bacteria. It has been proposed that bacteria producing photoactive iron binding compounds known as siderophores could play an important role in such mutualistic associations by producing bioavailable iron utilizable by phytoplankton and in exchange receive autotrophically derived DOM. In order to understand the potential role photoactive siderophores might be playing in bacterial-algal mutualism or marine biogeochemistry in general, it is important to be able to detect and quantify their presence in various environments. One approach to accomplish that end is to make use of high sensitivity genomics technology (qPCR) to search for siderophore biosynthesis genes related to the production of photoactive siderophores. In this way one can access their "biochemical potential" and utilize this information as a proxy for the presence of these siderophores in the marine environment. In this report we studied the correlation of the presence of bacteria producing one of the three photoactive siderophores relative to total bacterial and dinoflagellate numbers from surface water at the Scripps Pier before, during, and after fall bloom of the dinoflagellate Lingulodinium polyedrum. We believe that these findings will aid us in gauging the importance of photoactive siderophores in the marine environment and in harmful algal bloom dynamics in particular.


Assuntos
Dinoflagellida/fisiologia , Eutrofização , Fitoplâncton/fisiologia , Sideróforos/metabolismo , Dinoflagellida/genética , Genes Bacterianos , Processos Fotoquímicos , Filogenia , Fitoplâncton/genética , Sideróforos/genética
19.
J Exp Bot ; 65(2): 585-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24368501

RESUMO

Although the iron uptake and storage mechanisms of terrestrial/higher plants have been well studied, the corresponding systems in marine algae have received far less attention. Studies have shown that while some species of unicellular algae utilize unique mechanisms of iron uptake, many acquire iron through the same general mechanisms as higher plants. In contrast, the iron acquisition strategies of the multicellular macroalgae remain largely unknown. This is especially surprising since many of these organisms represent important ecological and evolutionary niches in the coastal marine environment. It has been well established in both laboratory and environmentally derived samples, that a large amount of iron can be 'non-specifically' adsorbed to the surface of marine algae. While this phenomenon is widely recognized and has prompted the development of experimental protocols to eliminate its contribution to iron uptake studies, its potential biological significance as a concentrated iron source for marine algae is only now being recognized. This study used an interdisciplinary array of techniques to explore the nature of the extensive and powerful iron binding on the surface of both laboratory and environmental samples of the marine brown alga Ectocarpus siliculosus and shows that some of this surface-bound iron is eventually internalized. It is proposed that the surface-binding properties of E. siliculosus allow it to function as a quasibiological metal ion 'buffer', allowing iron uptake under the widely varying external iron concentrations found in coastal marine environments.


Assuntos
Ferro/metabolismo , Phaeophyceae/metabolismo , Soluções Tampão , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ácido Edético/farmacologia , Compostos Ferrosos/farmacologia , Íons , Cinética , Phaeophyceae/citologia , Phaeophyceae/efeitos dos fármacos , Phaeophyceae/ultraestrutura , Espectrometria por Raios X , Espectroscopia de Mossbauer , Termodinâmica , Fatores de Tempo
20.
J Am Chem Soc ; 135(39): 14504-7, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24028339

RESUMO

Boron in the ocean is generally considered a nonbiological element due to its relatively high concentration (0.4 mM) and depth independent concentration profile. Here we report an unexpected role for boron in the iron transport system of the marine bacterium Marinobacter algicola. Proteome analysis under varying boron concentrations revealed that the periplasmic ferric binding protein (Mb-FbpA) was among the proteins whose expression was most affected, strongly implicating the involvement of boron in iron utilization. Here we show that boron facilitates Fe(3+) sequestration by Mb-FbpA at pH 8 (oceanic pH) by acting as a synergistic anion (B(OH)4(1-)). Fe(3+) sequestration does not occur at pH 6.5 where boric acid (B(OH)3; pK(a) = 8.55) is the predominant species. Borate anion is also shown to bind to apo-Mb-FbpA with mM affinity at pH 8, consistent with the biological relevance implied from boron's oceanic concentration (0.4 mM). Borate is among those synergistic anions tested which support the strongest Fe(3+) binding to Mb-FbpA, where the range of anion dependent affinity constants is log K'(eff) = 21-22. Since the pKa of boric acid (8.55) lies near the pH of ocean water, changes in oceanic pH, as a consequence of fluctuations in atmospheric CO2, may perturb iron uptake in many marine heterotrophic bacteria due to a decrease in oceanic borate anion concentration.


Assuntos
Proteínas de Bactérias/metabolismo , Boratos/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Marinobacter/metabolismo , Ânions/metabolismo , Boro/metabolismo , Ferro/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA