Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1408750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725568

RESUMO

Oxygen (O2) supply is constantly maintained by the vascular network for a proper tissue oxygenation. Hypoxia is the result of an increased O2 demand and/or decreased supply and is common in both physiological conditions and human diseases. Angiogenesis is one of the adaptive responses to hypoxia and is mainly regulated by the hypoxia-inducible factors, HIFs. These heterodimeric transcription factors are composed of one of three O2-dependent α subunits (HIF-1, HIF-2, and HIF-3) and a constitutively expressed O2-insensitive subunit (HIF-1ß). Among them HIF-1α is the most characterized and its activity is tightly controlled. Under hypoxia, its intracellular accumulation triggers the transcription of several genes, involved in cell survival/proliferation, autophagy, apoptosis, cell metabolism, and angiogenesis. HIF pathway is also modulated by specific microRNAs (miRNAs), thus resulting in the variation of several cellular responses, including alteration of the angiogenic process. The pro-angiogenic activity of HIF-1α is not restricted to endothelial cells, as it also affects the behavior of other cell types, including tumor and inflammatory/immune cells. In this context, exosomes play a crucial role in cell-cell communication by transferring bio-active cargos such as mRNAs, miRNAs, and proteins (e.g., VEGFA mRNA, miR210, HIF-1α). This minireview will provide a synopsis of the multiple factors able to modulate hypoxia-induced angiogenesis especially in the tumor microenvironment context. Targeting hypoxia signaling pathways by up-to-date approaches may be relevant in the design of therapeutic strategies in those pathologies where angiogenesis is dysregulated.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399442

RESUMO

Melanoma is the principal cause of death in skin cancer due to its ability to invade and cause metastasis. Hypoxia, which characterises the tumour microenvironment (TME), plays an important role in melanoma development, as cancer cells can adapt and acquire a more aggressive phenotype. Carbonic anhydrases (CA) activity, involved in pH regulation, is related to melanoma cell migration and invasion. Furthermore, the Hedgehog (Hh) pathway, already known for its role in physiological processes, is a pivotal character in cancer cell growth and can represent a promising pharmacological target. In this study, we targeted Hh pathway components with cyclopamine, glabrescione B and C22 in order to observe their effect on carbonic anhydrase XII (CAXII) expression especially under hypoxia. We then performed a migration and invasion assay on two melanoma cell lines (SK-MEL-28 and A375) where Smoothened, the upstream protein involved in Hh regulation, and GLI1, the main transcription factor that determines Hh pathway activation, were chemically inhibited. Data suggest the existence of a relationship between CAXII, hypoxia and the Hedgehog pathway demonstrating that the chemical inhibition of the Hh pathway and CAXII reduction resulted in melanoma migration and invasion impairment especially under hypoxia. As in recent years drug resistance to small molecules has arisen, the development of new chemical compounds is crucial. The multitarget Hh inhibitor C22 proved to be effective without signs of cytotoxicity and, for this reason, it can represent a promising compound for future studies, with the aim to reach a better melanoma disease management.

3.
Cancer Immunol Immunother ; 73(1): 2, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175205

RESUMO

BACKGROUND: The immunosuppressive tumor microenvironment (TME) of colorectal cancer (CRC) is a major hurdle for immune checkpoint inhibitor-based therapies. Hence characterization of the signaling pathways driving T cell exhaustion within TME is a critical need for the discovery of novel therapeutic targets and the development of effective therapies. We previously showed that (i) the adaptor protein Rai is a negative regulator of T cell receptor signaling and T helper 1 (Th1)/Th17 cell differentiation; and (ii) Rai deficiency is implicated in the hyperactive phenotype of T cells in autoimmune diseases. METHODS: The expression level of Rai was measured by qRT-PCR in paired peripheral blood T cells and T cells infiltrating tumor tissue and the normal adjacent tissue in CRC patients. The impact of hypoxia-inducible factor (HIF)-1α on Rai expression was evaluated in T cells exposed to hypoxia and by performing chromatin immunoprecipitation assays and RNA interference assays. The mechanism by which upregulation of Rai in T cells promotes T cell exhaustion were evaluated by flow cytometric, qRT-PCR and western blot analyses. RESULTS: We show that Rai is a novel HIF-1α-responsive gene that is upregulated in tumor infiltrating lymphocytes of CRC patients compared to patient-matched circulating T cells. Rai upregulation in T cells promoted Programmed cell Death protein (PD)-1 expression and impaired antigen-dependent degranulation of CD8+ T cells by inhibiting phospho-inactivation of glycogen synthase kinase (GSK)-3, a central regulator of PD-1 expression and T cell-mediated anti-tumor immunity. CONCLUSIONS: Our data identify Rai as a hitherto unknown regulator of the TME-induced exhausted phenotype of human T cells.


Assuntos
Neoplasias Colorretais , Quinase 3 da Glicogênio Sintase , Humanos , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Hipóxia , Linfócitos do Interstício Tumoral , Receptor de Morte Celular Programada 1/genética , Microambiente Tumoral , Regulação para Cima
4.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119625, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37981035

RESUMO

The sequestosome 1 (SQSTM1)/p62 is an adaptor protein which plays multiple roles in several cell functions, including cell survival and autophagy. Dendritic cells (DCs) are the most prominent antigen presenting cells and during their lifespan they are exposed to different oxygen tensions, including hypoxia. By using a siRNA approach we found out that p62 was implicated in the maintenance of Erk1/2 phosphorylation and preservation of hypoxic DC survival, as well as in the reduction of AMPK activation. Thus, p62 expression in DCs in hypoxic microenvironments, such as in the lymphoid organs, may extend their lifespan to ensure their functions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Humanos , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hipóxia , Células Dendríticas/metabolismo
5.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047096

RESUMO

Cutaneous melanoma is a highly aggressive skin cancer, with poor prognosis. The tumor microenvironment is characterized by areas of hypoxia. Carbonic anhydrase IX (CA-IX) is a marker of tumor hypoxia and its expression is regulated by hypoxia-inducible factor-1 (HIF-1). CA-IX has been found to be highly expressed in invasive melanomas. In this study, we investigated the effects of hypoxia on the release of small extracellular vesicles (sEVs) in two melanoma in vitro models. We demonstrated that melanoma cells release sEVs under both normoxic and hypoxic conditions, but only hypoxia-induced sEVs express CA-IX mRNA and protein. Moreover, we optimized an ELISA assay to provide evidence for CA-IX protein expression on the membranes of the sEVs. These CA-IX-positive sEVs may be exploited as potential biomarkers for liquid biopsy.


Assuntos
Anidrases Carbônicas , Melanoma , Neoplasias Cutâneas , Humanos , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Anidrase Carbônica IX/genética , Anidrases Carbônicas/metabolismo , Hipóxia , Melanoma/genética , Microambiente Tumoral , Melanoma Maligno Cutâneo
6.
Cancers (Basel) ; 14(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36230699

RESUMO

BACKGROUND: Malignant melanoma is the leading cause of death among skin cancer patients due to its tendency to metastasize. Alterations at the molecular level are often evident, which is why melanoma biology has garnered increasing interest. The hedgehog (Hh) pathway, which is essential for embryonic development, is aberrantly re-activated in melanoma and may represent a promising therapeutic target. In addition, carbonic anhydrase XII (CAXII) represents a poor prognostic target for hypoxic tumors, such as melanoma, and is involved in cell migration. Thus, we decided to investigate whether and how the Hh pathway and CAXII may control melanoma cell migration and invasiveness. METHODS: The migratory and invasive capabilities of SK-MEL-28 and A375 cell lines, either un-transfected or transiently transfected with Smoothened (SMO), GLI1, or CAXII siRNA, were studied under normoxic or hypoxic conditions. RESULTS: For the first time, we showed that SMO and GLI1 silencing resulted in the downregulation of CAXII expression in both moderately and highly invasive melanoma cells under hypoxia. The Hh pathway as well as CAXII inhibition by siRNA resulted in impaired malignant melanoma migration and invasion. CONCLUSION: Our results suggest that CAXII and the Hh pathway are relevant in melanoma invasion and may be novel and promising therapeutical targets for melanoma clinical management.

7.
Cells ; 11(10)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35626732

RESUMO

Hypoxia is a component of both physiological and pathological conditions, including inflammation, solid tumors, and lymphoid tissues, where O2 demand is not balanced by O2 supply. During their lifespan, dendritic cells (DCs) are exposed to different pO2 and activate different adaptive responses, including autophagy, to preserve their viability and functions. Autophagy plays multiple roles in DC physiology. Very recently, we demonstrated that hypoxia shapes autophagy in DCs upon their differentiation state. Here, we proposed a role for PI3Ks, and especially class III PI3K/Vps34, that could be relevant in hypoxia-induced autophagy, in either immature or mature DCs. Hypoxia inhibited mTOR phosphorylation and activated a pro-autophagic program. By using different pharmacological inhibitors, we demonstrated that hypoxia-induced autophagy was mediated by PI3Ks, especially by Vps34. Furthermore, Vps34 expression was enhanced by LPS, a TLR4 ligand, along with the promotion of autophagy under hypoxia. The Vps34 inhibitor, SAR405, abolished hypoxia-induced autophagy, inhibited pro-survival signaling and viability, and increased the expression of proinflammatory cytokines. Our results underlined the impact of autophagy in the maintenance of DC homeostasis at both cell survival and inflammatory response levels, therefore, contributing to a better understanding of the significance of autophagy in DC physiology and pathology.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases , Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células Dendríticas/metabolismo , Humanos , Hipóxia , Transdução de Sinais
8.
Biology (Basel) ; 10(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209290

RESUMO

Hypoxia is a severe stress condition often observed in cancer and chronically inflamed cells and tissues. Extracellular vesicles play pivotal roles in these pathological processes and carry biomolecules that can be detected in many biofluids and may be exploited for diagnostic purposes. Several studies report the effects of hypoxia on extracellular vesicles' release, molecular content, and biological functions in disease. This review summarizes the most recent findings in this field, highlighting the areas that warrant further investigation.

9.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299186

RESUMO

Hypoxia is a key component of the tumor microenvironment (TME) and promotes not only tumor growth and metastasis, but also negatively affects infiltrating immune cells by impairing host immunity. Dendritic cells (DCs) are the most potent antigen-presenting cells and their biology is weakened in the TME in many ways, including the modulation of their viability. RNASET2 belongs to the T2 family of extracellular ribonucleases and, besides its nuclease activity, it exerts many additional functions. Indeed, RNASET2 is involved in several human pathologies, including cancer, and it is functionally relevant in the TME. RNASET2 functions are not restricted to cancer cells and its expression could be relevant also in other cell types which are important players in the TME, including DCs. Therefore, this study aimed to unravel the effect of hypoxia (2% O2) on the expression of RNASET2 in DCs. Here, we showed that hypoxia enhanced the expression and secretion of RNASET2 in human monocyte-derived DCs. This paralleled the HIF-1α accumulation and HIF-dependent and -independent signaling, which are associated with DCs' survival/autophagy/apoptosis. RNASET2 expression, under hypoxia, was regulated by the PI3K/AKT pathway and was almost completely abolished by TLR4 ligand, LPS. Taken together, these results highlight how hypoxia- dependent and -independent pathways shape RNASET2 expression in DCs, with new perspectives on its implication for TME and, therefore, in anti-tumor immunity.


Assuntos
Hipóxia Celular/fisiologia , Células Dendríticas/metabolismo , Monócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ribonucleases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Monócitos/imunologia , Monócitos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ribonucleases/biossíntese , Ribonucleases/imunologia , Transdução de Sinais , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/imunologia
10.
Front Immunol ; 11: 573646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329536

RESUMO

During their lifespan, dendritic cells (DCs) are exposed to different pO2 levels that affect their differentiation and functions. Autophagy is one of the adaptive responses to hypoxia with important implications for cell survival. While the autophagic machinery in DCs was shown to impact signaling of TLRs, its regulation by the MD-2/TLR4 ligand LPS is still unclear. The aim of this study was to evaluate whether LPS can induce autophagy in DCs exposed to either aerobic or hypoxic conditions. Using human monocyte-derived DCs and the combination of immunofluorescence confocal analysis, measure of mitochondrial membrane potential, Western blotting, and RT-qPCR, we showed that the ability of LPS to modulate autophagy was strictly dependent upon pO2 levels. Indeed, LPS inhibited autophagy in aerobic conditions whereas the autophagic process was induced in a hypoxic environment. Under hypoxia, LPS treatment caused a significant increase of functional lysosomes, LC3B and Atg protein upregulation, and reduction of SQSTM1/p62 protein levels. This selective regulation was accompanied by activation of signalling pathways and expression of cytokines typically associated with DC survival. Bafilomycin A1 and chloroquine, which are recognized as autophagic inhibitors, confirmed the induction of autophagy by LPS under hypoxia and its impact on DC survival. In conclusion, our results show that autophagy represents one of the mechanisms by which the activation of the MD-2/TLR4 ligand LPS promotes DC survival under hypoxic conditions.


Assuntos
Autofagia/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Hipóxia Celular , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Humanos , Ligantes , Antígeno 96 de Linfócito/agonistas , Transdução de Sinais , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo
11.
Cancers (Basel) ; 12(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080820

RESUMO

BACKGROUND: Intratumoral hypoxia contributes to cancer progression and poor prognosis. Carbonic anhydrases IX (CAIX) and XII (CAXII) play pivotal roles in tumor cell adaptation and survival, as aberrant Hedgehog (Hh) pathway does. In malignant melanoma both features have been investigated for years, but they have not been correlated before and/or identified as a potential pharmacological target. Here, for the first time, we demonstrated that malignant melanoma cell motility was impaired by targeting CAXII via either CAs inhibitors or through the inhibition of the Hh pathway. METHODS: We tested cell motility in three melanoma cell lines (WM-35, SK-MEL28, and A375), with different invasiveness capabilities. To this end we performed a scratch assay in the presence of the smoothened (SMO) antagonist cyclopamine (cyclo) or CAs inhibitors under normoxia or hypoxia. Then, we analyzed the invasiveness potential in the cell lines which were more affected by cyclo and CAs inhibitors (SK-MEL28 and A375). Western blot was employed to assess the expression of the hypoxia inducible factor 1α, CAXII, and FAK phosphorylation. Immunofluorescence staining was performed to verify the blockade of CAXII expression. RESULTS: Hh inhibition reduced melanoma cell migration and CAXII expression under both normoxic and hypoxic conditions. Interestingly, basal CAXII expression was higher in the two more aggressive melanoma cell lines. Finally, a direct CAXII blockade impaired melanoma cell migration and invasion under hypoxia. This was associated with a decrease of FAK phosphorylation and metalloprotease activities. CONCLUSIONS: CAXII may be used as a target for melanoma treatment not only through its direct inhibition, but also through Hh blockade.

12.
J Cell Physiol ; 235(11): 8058-8070, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31944299

RESUMO

Hypoxia occurs in physiological and pathological conditions. T cells experience hypoxia in pathological and physiological conditions as well as in lymphoid organs. Indeed, hypoxia-inducible factor 1α (HIF-1α) affects T cell survival and functions. Rai, an Shc family protein member, exerts pro-survival effects in hypoxic neuroblastoma cells. Since Rai is also expressed in T cells, we here investigated its role in hypoxic T cells. In this work, hypoxia differently affected cell survival, proapoptotic, and metabolic programs in T cells, depending upon Rai expression. By using Jurkat cells stably expressing Rai and splenocytes from Rai-/- mice, we demonstrated that Rai promotes T cell survival and affects cell metabolism under hypoxia. Upon exposure to hypoxia, Jurkat T cells expressing Rai show (a) higher HIF-1α protein levels; (b) a decreased cell death and increased Akt/extracellular-signal-regulated kinase phosphorylation; (c) a decreased expression of proapoptotic markers, including caspase activities and poly(ADP-ribose) polymerase cleavage; (d) an increased glucose and lactate metabolism; (e) an increased activation of nuclear factor-kB pathway. The opposite effects were observed in hypoxic splenocytes from Rai-/- mice. Thus, Rai plays an important role in hypoxic signaling and may be relevant in the protection of T cells against hypoxia.


Assuntos
Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neuroblastoma/genética , Linfócitos T/metabolismo , Transativadores/genética , Animais , Apoptose/genética , Caspases/genética , Hipóxia Celular/imunologia , Sobrevivência Celular/genética , Glucose/metabolismo , Humanos , Células Jurkat , Ácido Láctico/metabolismo , Camundongos , Camundongos Knockout , Neuroblastoma/imunologia , Neuroblastoma/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Linfócitos T/imunologia , Linfócitos T/patologia
13.
J Cell Physiol ; 233(12): 9799-9811, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30132883

RESUMO

Breast cancer (BC) relapse and metastasis are the leading cause of death and, together with drug resistance, keep mortality still high. The Hedgehog (Hh) pathway is expressed during embryogenesis, organogenesis and in adult tissue homeostasis and its aberrant activation is often associated with cancer. Carbonic anhydrase (CA) enzymes are important during development; they play a key role in controlling several cellular mechanisms, such as pH regulation, survival, and migration, and they are aberrantly expressed in cancer. The goal of this study was to investigate the interplay between the Hh pathway and CAXII in terms of BC cell migration. We here demonstrated that smoothened (SMO) silencing resulted in a reduction of CAXII expression at mRNA and protein level. This led to a decrease in cell migration, which was restored when cells were treated with an SMO agonist, Sag dihydrochloride (SAG), but not when cells were cotreated with SAG and the CAs inhibitor Acetazolamide. This suggested that the ability of SAG to promote cell migration was impaired when CAXII was inhibited. The reduction was also confirmed within hypoxic and inflammatory microenvironment, typical of BC, indicating a key role of the Hh pathway in controlling CAXII expression. Our results may contribute to further understand the physiology of BC cells and indicate that the Hh pathway controls BC cell migration and cell invasion also through CAXII, with important implications in identifying novel therapeutic targets.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Anidrases Carbônicas/genética , Proteínas Hedgehog/genética , Receptor Smoothened/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Inativação Gênica , Humanos , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
14.
Cell Physiol Biochem ; 46(1): 203-212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29587264

RESUMO

BACKGROUND/AIMS: Hypoxia is a powerful stimulator of angiogenesis under physiological as well as pathological conditions. Normal endothelial cells (EC), such as human umbilical vein EC (HUVEC), are relatively affected by hypoxic insult in terms of cell survival. In contrast, EC from tumors are particularly resistant to hypoxia-induced cell death. Previous reports have shown that EC in bone marrow from multiple myeloma (MM) patients had a hypoxic phenotype, even under normoxic conditions. The aim of this study was to evaluate whether HUVEC and MMEC adapt differently to hypoxia. METHODS: Cell proliferation was assessed by the CyQUANT assay. Cdc25A, p21, Bax, Bcl-xl, BNIP3, glucose transporter (GLUT)-1, monocarboxylate transporter (MCT)-4 and carbonic anhydrase (CA)IX mRNA expression was determined by qRT-PCR. HIF-1α, BNIP3, Beclin-1, LC3B, livin, Bax, Bcl-xl, p21, p62 and ß-actin protein expression was analyzed by western blot. Apoptosis was determined by TUNEL assay. Silencing of BNIP3 was achieved by stealth RNA system technology. RESULTS: While HUVEC survival was reduced after prolonged hypoxic exposure, MMEC were completely unaffected. This difference was also significant in terms of livin, cdc25A and p21 expression. Hypoxia induced apoptosis and inhibited autophagy in HUVEC, but not in MMEC, where hypoxic treatment resulted in a more sustained adaptive response. In fact, MMEC showed a more significant increase in the expression of genes regulated transcriptionally by hypoxia-inducible factor (HIF)-1α. Interestingly, they showed higher expression of BNIP3 than did HUVEC, indicating a more pronounced autophagic (and pro-survival) phenotype. The potential role of BNIP3 in EC survival was confirmed by BNIP3 siRNA experiments in HUVEC, where BNIP3 inhibition resulted in reduced cell survival and increased apoptosis. CONCLUSION: These findings provide further information on how hypoxia may affect EC survival and could be important for a better understanding of EC physiology under normal and pathological conditions, such as in multiple myeloma.


Assuntos
Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína X Associada a bcl-2/metabolismo , Fosfatases cdc25/metabolismo
15.
J Cell Physiol ; 233(5): 4282-4293, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29057481

RESUMO

Neuroblastoma (NB) is a highly malignant pediatric solid tumor where a hypoxic signature correlates with unfavorable patient outcome. The hypoxia-inducible factor (HIF)-1α plays an important role in NB progression, contributing to cell proliferation and invasiveness. RAI belongs to the Shc family proteins, it is mainly neuron specific and protects against cerebral ischemia. RAI is also expressed in several NB cell lines, where it promotes cell survival. In this work, hypoxia differently affected cell survival and pro-apoptotic program in two NB cell lines, either expressing RAI (SKNBE) or not (SKNMC). RAI expression appeared to promote NB cell survival and to reduce some pro-apoptotic markers under hypoxia. Accordingly, the RAI silencing in SKNBE cells resulted in a reduction of cell survival and HIF-1α expression. Furthermore, using SKNMC cells stably expressing RAI, we defined a role of RAI in NB cell responses to hypoxia. Of interest, in hypoxic SKNMC cells expressing RAI HIF-1α protein levels were higher than in control cells. This was associated with a) an increased cell survival; b) an increased expression of anti-apoptotic markers; c) a pro-autophagic and not pro-apoptotic phenotype; and d) an increased metabolic activity. We may conclude that RAI plays an important role in hypoxic signaling in NB cells and the interplay between RAI and HIF-1α may be relevant in the protection of NB cells against hypoxia. Our results may contribute to a further understanding the physiology of NB cells and the molecular mechanisms involved in their survival, with important implications in NB progression.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neuroblastoma/genética , Proteínas Repressoras/genética , Hipóxia Tumoral/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neuroblastoma/patologia , Proteínas Adaptadoras da Sinalização Shc/genética , Transdução de Sinais/genética
16.
PLoS One ; 11(5): e0154959, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27149623

RESUMO

The over-expression of human neuroglobin (NGB), a heme-protein preferentially expressed in the brain, displays anti-apoptotic effects against hypoxic/ischemic and oxidative stresses enhancing neuron survival. As hypoxic and oxidative stress injury frequently occurs in fast proliferating neoplastic tissues, here, the effect of these stressors on the level, localization, and anti-apoptotic function of NGB in wild type and NGB-stable-silenced MCF-7 breast cancer cells has been assessed. The well-known endogenous NGB inducer 17ß-estradiol (E2) has been used as positive control. The median pO2 present in tumor microenvironment of breast cancer patients (i.e., 2% O2) does not affect the NGB level in breast cancer cells, whereas hydrogen peroxide and lead(IV) acetate, which increase intracellular reactive oxygen species (ROS) level, enhance the NGB levels outside the mitochondria and still activate apoptosis. However, E2-induced NGB up-regulation in mitochondria completely reverse lead(IV) acetate-induced PARP cleavage. These results indicate that the NGB level could represent a marker of oxidative-stress in MCF-7 breast cancer cells; however, the NGB ability to respond to injuring stimuli by preventing apoptosis requires its re-allocation into the mitochondria. As a whole, present data might lead to a new direction in understanding NGB function in cancer opening new avenues for the therapeutic intervention.


Assuntos
Apoptose/fisiologia , Neoplasias da Mama/metabolismo , Globinas/metabolismo , Hipóxia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Mitocôndrias/metabolismo , Neuroglobina , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/fisiologia , Regulação para Cima/fisiologia
17.
PLoS One ; 11(3): e0149919, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934052

RESUMO

The most relevant therapeutic approaches to treat CML rely on the administration of tyrosine kinase inhibitors (TKIs) like Imatinib, which are able to counteract the activity of Bcr-Abl protein increasing patient's life expectancy and survival. Unfortunately, there are some issues TKIs are not able to address; first of all TKIs are not so effective in increasing survival of patients in blast crisis, second they are not able to eradicate leukemic stem cells (LSC) which represent the major cause of disease relapse, and third patients often develop resistance to TKIs due to mutations in the drug binding site. For all these reasons it's of primary interest to find alternative strategies to treat CML. Literature shows that Hedgehog signaling pathway is involved in LSC maintenance, and pharmacological inhibition of Smoothened (SMO), one of the key molecules of the pathway, has been demonstrated to reduce Bcr-Abl positive bone marrow cells and LSC. Consequently, targeting SMO could be a promising way to develop a new treatment strategy for CML overcoming the limitations of current therapies. In our work we have tested some compounds able to inhibit SMO, and among them MRT92 appears to be a very potent SMO antagonist. We found that almost all our compounds were able to reduce Gli1 protein levels in K-562 and in KU-812 CML cell lines. Furthermore, they were also able to increase Gli1 and SMO RNA levels, and to reduce cell proliferation and induce apoptosis/autophagy in both the tested cell lines. Finally, we demonstrated that our compounds were able to modulate the expression of some miRNAs related to Hedgehog pathway such as miR-324-5p and miR-326. Being Hedgehog pathway deeply implicated in the mechanisms of CML we may conclude that it could be a good therapeutic target for CML and our compounds seem to be promising antagonists of such pathway.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Autofagia/efeitos dos fármacos , Crise Blástica/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened
18.
Mediators Inflamm ; 2015: 789414, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696754

RESUMO

Inflammation and tumor hypoxia are intimately linked and breast cancer provides a typical example of an inflammation-linked malignant disease. Indeed, breast cancer progression is actively supported by inflammatory components, including IL-1ß, and by the hypoxia-inducible factor- (HIF-) 1α. In spite of many attempts where the role of either IL-1ß or HIF-1α was evaluated, detailed mechanisms for their effects on breast cancer cell migration under hypoxia are still unclear. We here report that IL-1ß increased MDAMB231 cell migration under hypoxic conditions along with HIF-1α accumulation and upregulation of CXCR1, which is transcriptionally regulated by HIF-1α, as well as an increased expression of CXCL8 and NFκB. In addition, IL-1ß-induced cell migration in hypoxia was not affected when HIF-1α was inhibited by either siRNA or Topotecan, well known for its inhibitory effect on HIF-1α. Of interest, HIF-1α inhibition did not reduce NFκB and CXCL8 expression and the reduction of IL-1ß-induced cell migration under hypoxia was achieved only by pharmacological inhibition of NFκB. Our findings indicate that inhibition of HIF-1α does not prevent the migratory program activated by IL-1ß in hypoxic MDAMB231 cells. They also suggest a potential compensatory role of NFκB/CXCL8 pathway in IL-1ß-induced MDAMB231 cell migration in a hypoxic microenvironment.


Assuntos
Neoplasias da Mama/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Interleucina-1beta/farmacologia , NF-kappa B/fisiologia , Hipóxia Celular , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Interleucina-8/análise , Receptores de Interleucina-8A/análise , Células Tumorais Cultivadas
19.
J Cell Physiol ; 229(12): 2067-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24818793

RESUMO

Hypoxia represents an inadequate oxygen supply to tissues, which can modulate cell functions, primarily through the hypoxia-inducible transcription factor HIF-1α. Dendritic cells (DC) are professional antigen-presenting cells and their migration maybe affected by hypoxia, since the local microenvironment in lymphoid organs, as well as in inflamed and tumor tissues, is characterized by low oxygen tensions. In this study we observed an enhanced migratory capability of human monocyte-derived DC, using in vitro migration assays performed under hypoxic conditions. Such enhancement was independent on either the chemoattractants involved or the maturation level of DC. However, HIF-1α appeared to be crucial for the migration only of immature DC and not for mature DC under hypoxia, as indicated by HIF-1α siRNA approaches. Furthermore, we observed that while Akt phosphorylation was enhanced in both immature and mature DC exposed to hypoxia, other signaling pathways, such as p38 and p42/p44 MAPK, were differently affected during hypoxic treatment. More interestingly, aspecific and specific inhibition of PI3K/Akt indicated that such pathway was relevant for the migration of both immature and matured DC under hypoxia, even when DC were transfected with HIF-1α siRNA. Our results indicate that, besides HIF-1α, several other pathways, including PI3K/Akt, may be involved in the response to hypoxia of immature and, more specifically, of mature DC to sustain their trafficking and functions within hypoxic microenvironments.


Assuntos
Células Dendríticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Apresentadoras de Antígenos , Movimento Celular/genética , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Hipóxia/genética , Sistema de Sinalização das MAP Quinases/genética , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , RNA Interferente Pequeno , Transdução de Sinais/genética , Microambiente Tumoral/genética
20.
ChemMedChem ; 8(8): 1353-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23813855

RESUMO

Hematopoietic cell kinase (Hck) is a member of the Src family of non-receptor protein tyrosine kinases. High levels of Hck are associated with drug resistance in chronic myeloid leukemia. Furthermore, Hck activity has been connected with HIV-1. Herein, structure-based drug design efforts were aimed at identifying novel Hck inhibitors. First, an in-house library of pyrazolo[3,4-d]pyrimidine derivatives, which were previously shown to be dual Abl and c-Src inhibitors, was analyzed by docking studies within the ATP binding site of Hck to select the best candidates to be tested in a cell-free assay. Next, the same computational protocol was applied to screen a database of commercially available compounds. As a result, most of the selected compounds were found active against Hck, with Ki values ranging from 0.14 to 18.4 µM, confirming the suitability of the computational approach adopted. Furthermore, selected compounds showed an interesting antiproliferative activity profile against the human leukemia cell line KU-812, and one compound was found to block HIV-1 replication at sub-toxic concentrations.


Assuntos
Fármacos Anti-HIV/química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-hck/antagonistas & inibidores , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Cinética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/toxicidade , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-hck/metabolismo , Pirazóis/química , Pirazóis/uso terapêutico , Pirazóis/toxicidade , Pirimidinas/química , Pirimidinas/uso terapêutico , Pirimidinas/toxicidade , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA