Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 3005, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592812

RESUMO

Mammalian target of rapamycin (mTOR) is activated by numerous stimuli, including amino acids and growth factors. This kinase is part of the mTOR complex 1 (mTORC1) which regulates cell proliferation, differentiation, and autophagy. Active mTORC1 is located on lysosomes and has been reported to disassociate from the lysosomal surface in the absence of amino acids. Furthermore, mTORC1 activity has been linked to the vacuolar H+-ATPases (V-ATPases), the proton pumps responsible for lysosomal acidification; however, the exact role of the V-ATPases in mTORC1 signaling is not known. To elucidate the mechanisms involved in mTORC1 regulation by the V-ATPases, we used primary osteoclasts derived from mice carrying a point (R740S) mutation in the a3 subunit of the V-ATPase. In these cells, the mutant protein is expressed but the pump is not functional, resulting in higher lysosomal pH. By analyzing mTOR activation, mTOR/lysosome co-localization, and lysosomal positioning using confocal microscopy, fractionation, and ultrapure lysosomal purification methods, we demonstrate that in primary osteoclasts, mTOR is localized on the lysosomal surface even when mTOR activity is inhibited. Our findings reveal that mTOR targeting to the lysosome in osteoclasts is activity-independent, and that its disassociation from the lysosome during starvation is not universal.


Assuntos
Lisossomos/metabolismo , Osteoclastos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Fracionamento Celular , Células Cultivadas , Camundongos , Microscopia Confocal , Proteínas Mutantes/metabolismo , Transporte Proteico , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
2.
J Cell Biochem ; 117(2): 413-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26212375

RESUMO

Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in the regulation of cell growth. It has been shown to play an important role in osteoclast differentiation, particularly at the earlier stages of osteoclastogenesis. mTOR activation and function, as part of mTORC1 complex, is dependent on lysosomal localization and the vacuolar H(+) -ATPase (V-ATPase) activity; however, the precise mechanism is still not well understood. Using primary mouse osteoclasts that are known to have higher lysosomal pH due to R740S mutation in the V-ATPase a3 subunit, we investigated the role of lysosomal pH in mTORC1 signaling. Our results demonstrated that +/R740S cells had increased basal mTOR protein levels and mTORC1 activity compared to +/+ osteoclasts, while mTOR gene expression was decreased. Treatment with lysosomal inhibitors chloroquine and ammonium chloride, compounds known to raise lysosomal pH, significantly increased mTOR protein levels in +/+ cells, confirming the importance of lysosomal pH in mTOR signaling. These results also suggested that mTOR could be degraded in the lysosome. To test this hypothesis, we cultured osteoclasts with chloroquine or proteasomal inhibitor MG132. Both chloroquine and MG132 increased mTOR and p-mTOR protein levels in +/+ osteoclasts, suggesting that mTOR undergoes both lysosomal and proteasomal degradation. Treatment with cycloheximide, an inhibitor of new protein synthesis, confirmed that mTOR is constitutively expressed and degraded. These results show that, in osteoclasts, the lysosome plays a key role not only in mTOR activation but also in its deactivation through protein degradation, representing a novel molecular mechanism of mTOR regulation.


Assuntos
Lisossomos/metabolismo , Osteoclastos/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia , Células Cultivadas , Ativação Enzimática , Expressão Gênica , Concentração de Íons de Hidrogênio , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Complexos Multiproteicos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteólise , Serina-Treonina Quinases TOR/genética
3.
PLoS One ; 10(12): e0146042, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26713849

RESUMO

The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF-preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 µmol/L STa (30 minutes), 25 µmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 µmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 µmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 µmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (JH+) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and JH+ (~63%), without altering basal pHi (range 7.144-7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and JH+ was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa-decreased dpHi/dt and JH+ was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function promoting human diarrhoea.


Assuntos
AMP Cíclico/metabolismo , Enterotoxinas/farmacologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli , Temperatura Alta , Intestinos/citologia , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Adulto , Linhagem Celular Tumoral , GMP Cíclico/metabolismo , Estabilidade de Medicamentos , Enterotoxinas/química , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Masculino , Prótons , Trocadores de Sódio-Hidrogênio/metabolismo
4.
Am J Physiol Cell Physiol ; 307(6): C532-41, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25031022

RESUMO

Cumulative evidence suggests that guanylin peptides play an important role on electrolyte homeostasis. We have previously reported that uroguanylin (UGN) inhibits bicarbonate reabsorption in a renal distal tubule. In the present study, we tested the hypothesis that the bicarbonaturic effect of UGN is at least in part attributable to inhibition of H(+)-ATPase-mediated hydrogen secretion in the distal nephron. By in vivo stationary microperfusion experiments, we were able to show that UGN inhibits H(+)-ATPase activity by a PKG-dependent pathway because KT5823 (PKG inhibitor) abolished the UGN effect on distal bicarbonate reabsorption and H89 (PKA inhibitor) was unable to prevent it. The in vivo results were confirmed by the in vitro experiments, where we used fluorescence microscopy to measure intracellular pH (pHi) recovery after an acid pulse with NH4Cl. By this technique, we observed that UGN and 8 bromoguanosine-cGMP (8Br-cGMP) inhibited H(+)-ATPase-dependent pHi recovery and that the UGN inhibitory effect was abolished in the presence of the PKG inhibitor. In addition, by using RT-PCR technique, we verified that Madin-Darby canine kidney (MDCK)-C11 cells express guanylate cyclase-C. Besides, UGN stimulated an increase of both cGMP content and PKG activity but was unable to increase the production of cellular cAMP content and PKA activity. Furthermore, we found that UGN reduced cell surface abundance of H+-ATPase B1 subunit in MDCK-C11 and that this effect was abolished by the PKG inhibitor. Taken together, our data suggest that UGN inhibits H(+)-ATPase activity and surface expression in renal distal cells by a cGMP/PKG-dependent pathway.


Assuntos
Membrana Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Túbulos Renais Distais/efeitos dos fármacos , Peptídeos Natriuréticos/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Animais , Bicarbonatos/metabolismo , Membrana Celular/enzimologia , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Cães , Concentração de Íons de Hidrogênio , Túbulos Renais Distais/enzimologia , Células Madin Darby de Rim Canino , Masculino , Perfusão , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Ratos , Ratos Wistar , Receptores Acoplados a Guanilato Ciclase/efeitos dos fármacos , Receptores Acoplados a Guanilato Ciclase/genética , Receptores Acoplados a Guanilato Ciclase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
5.
J Am Soc Nephrol ; 25(9): 2028-39, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24652792

RESUMO

Na(+)-glucose cotransporter 1 (SGLT1)-mediated glucose uptake leads to activation of Na(+)-H(+) exchanger 3 (NHE3) in the intestine by a process that is not dependent on glucose metabolism. This coactivation may be important for postprandial nutrient uptake. However, it remains to be determined whether SGLT-mediated glucose uptake regulates NHE3-mediated NaHCO3 reabsorption in the renal proximal tubule. Considering that this nephron segment also expresses SGLT2 and that the kidneys and intestine show significant variations in daily glucose availability, the goal of this study was to determine the effect of SGLT-mediated glucose uptake on NHE3 activity in the renal proximal tubule. Stationary in vivo microperfusion experiments showed that luminal perfusion with 5 mM glucose stimulates NHE3-mediated bicarbonate reabsorption. This stimulatory effect was mediated by glycolytic metabolism but not through ATP production. Conversely, luminal perfusion with 40 mM glucose inhibited NHE3 because of cell swelling. Notably, pharmacologic inhibition of SGLT activity by Phlorizin produced a marked inhibition of NHE3, even in the absence of glucose. Furthermore, immunofluorescence experiments showed that NHE3 colocalizes with SGLT2 but not SGLT1 in the rat renal proximal tubule. Collectively, these findings show that glucose exerts a bimodal effect on NHE3. The physiologic metabolism of glucose stimulates NHE3 transport activity, whereas, supraphysiologic glucose concentrations inhibit this exchanger. Additionally, Phlorizin-sensitive SGLT transporters and NHE3 interact functionally in the proximal tubule.


Assuntos
Glucose/metabolismo , Túbulos Renais Proximais/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Bicarbonatos/metabolismo , Bicarbonatos/urina , Galactose/metabolismo , Imuno-Histoquímica , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Metilglucosídeos/metabolismo , Modelos Biológicos , Pressão Osmótica , Florizina/farmacologia , Ratos , Ratos Wistar , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Inibidores do Transportador 2 de Sódio-Glicose , Trocador 3 de Sódio-Hidrogênio
6.
Am J Physiol Renal Physiol ; 303(10): F1399-408, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22952280

RESUMO

We previously demonstrated that uroguanylin (UGN) significantly inhibits Na(+)/H(+) exchanger (NHE)3-mediated bicarbonate reabsorption. In the present study, we aimed to elucidate the molecular mechanisms underlying the action of UGN on NHE3 in rat renal proximal tubules and in a proximal tubule cell line (LLC-PK(1)). The in vivo studies were performed by the stationary microperfusion technique, in which we measured H(+) secretion in rat renal proximal segments, through a H(+)-sensitive microelectrode. UGN (1 µM) significantly inhibited the net of proximal bicarbonate reabsorption. The inhibitory effect of UGN was completely abolished by either the protein kinase G (PKG) inhibitor KT5823 or by the protein kinase A (PKA) inhibitor H-89. The effects of UGN in vitro were found to be similar to those obtained by microperfusion. Indeed, we observed that incubation of LLC-PK(1) cells with UGN induced an increase in the intracellular levels of cAMP and cGMP, as well as activation of both PKA and PKG. Furthermore, we found that UGN can increase the levels of NHE3 phosphorylation at the PKA consensus sites 552 and 605 in LLC-PK(1) cells. Finally, treatment of LLC-PK(1) cells with UGN reduced the amount of NHE3 at the cell surface. Overall, our data suggest that the inhibitory effect of UGN on NHE3 transport activity in proximal tubule is mediated by activation of both cGMP/PKG and cAMP/PKA signaling pathways which in turn leads to NHE3 phosphorylation and reduced NHE3 surface expression. Moreover, this study sheds light on mechanisms by which guanylin peptides are intricately involved in the maintenance of salt and water homeostasis.


Assuntos
Bicarbonatos/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Peptídeos Natriuréticos/farmacologia , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Carbazóis/farmacologia , Linhagem Celular , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Isoquinolinas/farmacologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Trocador 3 de Sódio-Hidrogênio , Sulfonamidas/farmacologia
7.
J Cell Biol ; 198(1): 23-35, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22753898

RESUMO

Presenilin (PSEN) deficiency is accompanied by accumulation of endosomes and autophagosomes, likely caused by impaired endo-lysosomal fusion. Recently, Lee et al. (2010. Cell. doi: http://dx.doi.org/10.1016/j.cell.2010.05.008) attributed this phenomenon to PSEN1 enabling the transport of mature V0a1 subunits of the vacuolar ATPase (V-ATPase) to lysosomes. In their view, PSEN1 mediates the N-glycosylation of V0a1 in the endoplasmic reticulum (ER); consequently, PSEN deficiency prevents V0a1 glycosylation, compromising the delivery of unglycosylated V0a1 to lysosomes, ultimately impairing V-ATPase function and lysosomal acidification. We show here that N-glycosylation is not a prerequisite for proper targeting and function of this V-ATPase subunit both in vitro and in vivo in Drosophila melanogaster. We conclude that endo-lysosomal dysfunction in PSEN(-/-) cells is not a consequence of failed N-glycosylation of V0a1, or compromised lysosomal acidification. Instead, lysosomal calcium storage/release is significantly altered in PSEN(-/-) cells and neurons, thus providing an alternative hypothesis that accounts for the impaired lysosomal fusion capacity and accumulation of endomembranes that accompanies PSEN deficiency.


Assuntos
Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Homeostase/fisiologia , Lisossomos/metabolismo , Presenilina-1/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Fibroblastos/metabolismo , Glicosilação , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
8.
Am J Physiol Regul Integr Comp Physiol ; 302(1): R166-74, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22031782

RESUMO

Heart failure (HF) is associated with a reduced effective circulating volume that drives sodium and water retention and extracellular volume expansion. We therefore hypothesized that Na(+)/H(+) exchanger isoform 3 (NHE3), the major apical transcellular pathway for sodium reabsorption in the proximal tubule, is upregulated in an experimental model of HF. HF was induced in male rats by left ventricle radiofrequency ablation. Sham-operated rats (sham) were used as controls. At 6 wk after surgery, HF rats exhibited cardiac dysfunction with a dramatic increase in left ventricular end-diastolic pressure. By means of stationary in vivo microperfusion and pH-dependent sodium uptake, we demonstrated that NHE3 transport activity was significantly higher in the proximal tubule of HF compared with sham rats. Increased NHE3 activity was paralleled by increased renal cortical NHE3 expression at both protein and mRNA levels. In addition, the baseline PKA-dependent NHE3 phosphorylation at serine 552 was reduced in renal cortical membranes of rats with HF. Collectively, these results suggest that NHE3 is upregulated in the proximal tubule of HF rats by transcriptional, translational, and posttranslational mechanisms. Enhanced NHE3-mediated sodium reabsorption in the proximal tubule may contribute to extracellular volume expansion and edema, the hallmark feature of HF. Moreover, our study emphasizes the importance of undertaking a cardiorenal approach to contain progression of cardiac disease.


Assuntos
Insuficiência Cardíaca/metabolismo , Túbulos Renais Proximais/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Transporte Biológico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/fisiopatologia , Túbulos Renais Proximais/fisiopatologia , Masculino , Modelos Animais , Fosforilação , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Trocador 3 de Sódio-Hidrogênio
9.
Traffic ; 12(11): 1490-500, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21819499

RESUMO

pH varies widely among the different intracellular compartments. The establishment and maintenance of a particular pH appears to be critical for proper organellar function. This has been deduced from experiments where intraorganellar pH was altered by means of weak acids or bases, ionophores or inhibitors of the vacuolar H(+)-ATPase (V-ATPase). These manipulations, however, are not specific and simultaneously alter the pH of multiple compartments. As a result, it is difficult to assign their effect to a defined organelle. To circumvent this limitation, we designed and implemented a procedure to selectively manipulate the pH of a compartment of choice, using lysosomes as a model organelle. The approach is based on the targeted and continuous enzymatic generation of weak electrolyte, which enabled us to overcome the high buffering capacity of the lysosomal lumen, without altering the pH of other compartments. We targeted jack-bean urease to lysosomes and induced the localized generation of ammonia by providing the membrane-permeant substrate, urea. This resulted in a marked, rapid and fully reversible alkalinization that was restricted to the lysosomal lumen, without measurably affecting the pH of endosomes or of the cytosol. The acute alkalinization induced by urease-urea impaired the activity of pH-dependent lysosomal enzymes, including cathepsins C and L, without altering endosomal function. This approach, which can be extended to other organelles, enables the analysis of the role of pH in selected compartments, without the confounding effects of global disturbances in pH or vesicular traffic.


Assuntos
Amônia/metabolismo , Eletrólitos/metabolismo , Lisossomos/metabolismo , Ureia/metabolismo , Urease/metabolismo , Animais , Células COS , Permeabilidade da Membrana Celular/fisiologia , Chlorocebus aethiops , Citosol/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Células Tumorais Cultivadas
10.
J Nephrol ; 23 Suppl 16: S19-27, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21170879

RESUMO

The functional versatility of the distal nephron is mainly due to the large cytological heterogeneity of the segment. Part of Na+ uptake by distal tubules is dependent on Na+/H+ exchanger 2 (NHE2), implicating a role of distal convoluted cells also in acid-base homeostasis. In addition, intercalated (IC) cells expressed in distal convoluted tubules, connecting tubules and collecting ducts are involved in the final regulation of acid-base excretion. IC cells regulate acid-base handling by 2 main transport proteins, a V-type H+-ATPase and a Cl/HCO3- exchanger, localized at different membrane domains. Type A IC cells are characterized by a luminal H+-ATPase in series with a basolateral Cl/HCO3- exchanger, the anion exchanger AE1. Type B IC cells mediate HCO3- secretion through the apical Cl-/HCO3- exchanger pendrin in series with a H+-ATPase at the basolateral membrane. Alternatively, H+/K+-ATPases have also been found in several distal tubule cells, particularly in type A and B IC cells. All of these mechanisms are finely regulated, and mutations of 1 or more proteins ultimately lead to expressive disorders of acid-base balance.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Túbulos Renais Distais/metabolismo , Néfrons/metabolismo , Animais , Antiportadores de Cloreto-Bicarbonato/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Humanos , Transporte de Íons , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia
11.
Cell Physiol Biochem ; 26(4-5): 563-76, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21063094

RESUMO

BACKGROUND/AIMS: It has been widely accepted that chloride ions moving along chloride channels act to dissipate the electrical gradient established by the electrogenic transport of H(+) ions performed by H(+)-ATPase into subcellular vesicles. Largely known in intracellular compartments, this mechanism is also important at the plasma membrane of cells from various tissues, including kidney. The present work was performed to study the modulation of plasma membrane H(+)-ATPase by chloride channels, in particular, CFTR and ClC-5 in kidney proximal tubule. METHODS AND RESULTS: Using in vivo stationary microperfusion, it was observed that ATPase-mediated HCO(3)(-) reabsorption was significantly reduced in the presence of the Cl(-) channels inhibitor NPPB. This effect was confirmed in vitro by measuring the cell pH recovery rates after a NH(4)Cl pulse in immortalized rat renal proximal tubule cells, IRPTC. In these cells, even after abolishing the membrane potential with valinomycin, ATPase activity was seen to be still dependent on Cl(-). siRNA-mediated CFTR channels and ClC-5 chloride-proton exchanger knockdown significantly reduced H(+)-ATPase activity and V-ATPase B2 subunit expression. CONCLUSION: These results indicate a role of chloride in modulating plasma membrane H(+)-ATPase activity in proximal tubule and suggest that both CFTR and ClC-5 modulate ATPase activity.


Assuntos
Canais de Cloreto/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Túbulos Renais Proximais/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Cloreto de Amônio/farmacologia , Animais , Antibacterianos/farmacologia , Bicarbonatos/metabolismo , Linhagem Celular , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Nitrobenzoatos/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Ratos , Valinomicina/farmacologia
12.
Am J Physiol Renal Physiol ; 299(4): F872-81, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20630932

RESUMO

Abnormalities in renal proximal tubular (PT) sodium transport play an important role in the pathophysiology of essential hypertension. The Na(+)/H(+) exchanger isoform 3 (NHE3) represents the major route for sodium entry across the apical membrane of renal PT cells. We therefore aimed to assess in vivo NHE3 transport activity and to define the molecular mechanisms underlying NHE3 regulation before and after development of hypertension in the spontaneously hypertensive rat (SHR). NHE3 function was measured as the rate of bicarbonate reabsorption by means of in vivo stationary microperfusion in PT from young prehypertensive SHR (Y-SHR; 5-wk-old), adult SHR (A-SHR; 14-wk-old), and age-matched Wistar Kyoto (WKY) rats. We found that NHE3-mediated PT bicarbonate reabsorption was reduced with age in the SHR (1.08 ± 0.10 vs. 0.41 ± 0.04 nmol/cm(2)×s), while it was increased in the transition from youth to adulthood in the WKY rat (0.59 ± 0.05 vs. 1.26 ± 0.11 nmol/cm(2)×s). Higher NHE3 activity in the Y-SHR compared with A-SHR was associated with a predominant microvilli confinement and a lower ratio of phosphorylated NHE3 at serine-552 to total NHE3 (P-NHE3/total). After development of hypertension, P-NHE3/total increased and NHE3 was retracted out of the microvillar microdomain along with the regulator dipeptidyl peptidase IV (DPPIV). Collectively, our data suggest that the PT is playing a role in adapting to the hypertension in the SHR. The molecular mechanisms of this adaptation possibly include an increase of P-NHE3/total and a redistribution of the NHE3-DPPIV complex from the body to the base of the PT microvilli, both predicted to decrease sodium reabsorption.


Assuntos
Envelhecimento/metabolismo , Hipertensão/metabolismo , Túbulos Renais Proximais/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Absorção , Animais , Bicarbonatos/metabolismo , Pressão Sanguínea/fisiologia , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Masculino , Microvilosidades/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Trocador 3 de Sódio-Hidrogênio
13.
Am J Physiol Renal Physiol ; 297(6): F1647-55, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19776173

RESUMO

The gut incretin hormone glucagon-like peptide 1 (GLP-1) is released in response to ingested nutrients and enhances insulin secretion. In addition to its insulinotropic properties, GLP-1 has been shown to have natriuretic actions paralleled by a diminished proton secretion. We therefore studied the role of the GLP-1 receptor agonist exendin-4 in modulating the activity of Na(+)/H(+) exchanger NHE3 in LLC-PK(1) cells. We found that NHE3-mediated Na(+)-dependent intracellular pH (pH(i)) recovery decreased approximately 50% after 30-min treatment with 1 nM exendin-4. Pharmacological inhibitors and cAMP analogs that selectively activate protein kinase A (PKA) or the exchange protein directly activated by cAMP (EPAC) demonstrated that regulation of NHE3 activity by exendin-4 requires activation of both cAMP downstream effectors. This conclusion was based on the following observations: 1) the PKA antagonist H-89 completely prevented the effect of the PKA activator but only partially blocked the exendin-4-induced NHE3 inhibition; 2) the MEK1/2 inhibitor U-0126 abolished the effect of the EPAC activator but only diminished the exendin-4-induced NHE3 inhibition; 3) combination of H-89 and U-0126 fully prevented the effect of exendin-4 on NHE3; 4) no additive effect in the inhibition of NHE3 activity was observed when exendin-4, PKA, and EPAC activators were used together. Mechanistically, the inhibitory effect of exendin-4 on pH(i) recovery was associated with an increase of NHE3 phosphorylation. Conversely, this inhibition took place without changes in the surface expression of the transporter. We conclude that GLP-1 receptor agonists modulate sodium homeostasis in the kidney, most likely by affecting NHE3 activity.


Assuntos
Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Peptídeos/farmacologia , Receptores de Glucagon/agonistas , Trocadores de Sódio-Hidrogênio/metabolismo , Peçonhas/farmacologia , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1 , Homeostase/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Isoquinolinas/farmacologia , Túbulos Renais Proximais/citologia , Células LLC-PK1 , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos , Transdução de Sinais/fisiologia , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio , Sulfonamidas/farmacologia , Suínos
14.
Am J Physiol Renal Physiol ; 294(5): F1232-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18322024

RESUMO

The activity of the Na(+)/H(+) exchanger NHE3 is regulated by a number of factors including parathyroid hormone (PTH). In the current study, we used a renal epithelial cell line, the opossum kidney (OKP) cell, to elucidate the mechanisms underlying the long-term effects of PTH on NHE3 transport activity and expression. We observed that NHE3 activity was reduced 6 h after addition of PTH, and this reduction persisted almost unaltered after 24 h. The decrease in activity was associated with diminished NHE3 cell surface expression at 6, 16, and 24 h after PTH addition, total cellular NHE3 protein at 16 and 24 h, and NHE3 mRNA abundance at 24 h. The lower levels of NHE3 mRNA were associated to a small, but significant, decrease in mRNA stability. Additionally, by analyzing the rat NHE3 gene promoter activity in OKP cells, we verified that the regulatory region spanning the segment -152 to +55 was mildly reduced under the influence of PTH. This effect was completely abolished by the presence of the PKA inhibitor KT 5720. In conclusion, long-term exposure to PTH results in reduction of NHE3 mRNA levels due to a PKA-dependent inhibitory effect on the NHE3 promoter and a small reduction of mRNA half-life, and decrease in the total amount of protein which is preceded by endocytosis of the apical surface NHE3. The decreased NHE3 expression is likely to be responsible for the reduction of sodium, bicarbonate, and fluid reabsorption in the proximal tubule consistently perceived in experimental models of PTH disorders.


Assuntos
Gambás/fisiologia , Hormônio Paratireóideo/farmacologia , Trocadores de Sódio-Hidrogênio/biossíntese , Animais , Biotinilação , Carbazóis/farmacologia , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Luciferases/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Pirróis/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
15.
Pflugers Arch ; 455(5): 799-810, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17943310

RESUMO

The isoforms of the Na+/H+ exchanger present in T84 human colon cells were identified by functional and molecular methods. Cell pH was measured by fluorescence microscopy using the probe BCECF. Based on the pH recovery after an ammonium pulse and determination of buffering capacity of these cells, the rate of H+ extrusion (JH) was 3.68 mM/min. After the use of the amiloride derivative HOE-694 at 25 microM, which inhibits the isoforms NHE1 and NHE2, there remained 43% of the above transport rate, the nature of which was investigated. Evidence of the presence of NHE1, NHE2, and NHE4 was obtained by reverse transcriptase polymerase chain reaction (RT-PCR) (mRNA) and Western blot. There was no decrease of JH by the NHE3 inhibitor S3226 (1 microM) and no evidence of this isoform by RT-PCR was found. The following functional evidence for the presence of NHE4 was obtained: 25 microM EIPA abolished JH entirely, but NHE4 was not inhibited at 10 microM; substitution of Na by K increased the remainder, a property of NHE4; hypertonicity also increased this fraction of JH. Cl--dependent NHE was not detected: in 0 Cl- solutions JH was increased and not reduced. In 0 Cl- cell volume decreased significantly, which was abolished by the Cl- channel blocker NPPB, indicating that the 0 Cl- effect was because of reduction of cell volume. In conclusion, T84 human colon cells contain three isoforms of the Na+/H+ exchanger, NHE1, NHE2, and NHE4, but not the Cl-dependent NHE.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Neoplasias do Colo/metabolismo , Concentração de Íons de Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Equilíbrio Ácido-Base/efeitos dos fármacos , Equilíbrio Ácido-Base/fisiologia , Ácidos/farmacologia , Western Blotting , Soluções Tampão , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Cloretos/farmacologia , Neoplasias do Colo/patologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Modelos Biológicos , Compostos de Amônio Quaternário/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trocador 1 de Sódio-Hidrogênio , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
16.
Pflugers Arch ; 452(6): 728-36, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16680484

RESUMO

It has been documented that angiotensin II (ANG II) (10(-9) M) stimulates proton extrusion via H(+)-adenosine triphosphatase (ATPase) in proximal tubule cells. In the present study, we investigated the signaling pathways involved in the effects of ANG II on H(+)-ATPase activity and on the cytosolic free calcium concentration in immortalized rat proximal tubule cells, a permanent cell line derived from rat proximal tubules. The effects of ANG on pH(i) and [Ca(+2)](i) were assessed by the fluorescent probes, 2',7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxy-methyl ester and fluo-4-acetoxy-methyl ester, in the absence of Na(+) to block the Na(+)/H(+) exchanger. In the control situation, the pH recovery rate following intracellular acidification with NH(4)Cl was 0.073+/-0.011 pH units/min (n=12). This recovery was significantly increased with ANG II (10(-9 )M), to 0.12+/-0.015 pH units/min, n=10. This last effect was also followed by a significant increase of Ca(+2) (i), from 99.72+/-1.704 nM (n=21) to 401.23+/-33.91 nM (n=39). The stimulatory effect of ANG II was blocked in the presence of losartan, an angiotensin II subtype 1 (AT(1)) receptor antagonist. H89 [protein kinase A (PKA) inhibitor] plus ANG II had no effect on the pH recovery. Staurosporine [protein kinase C (PKC) inhibitor] impaired the effect of ANG II. Phorbol myristate acetate (PKC activator) mimicked in part the stimulatory effect of ANG II, but reduced Ca(+2) (i). 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (intracellular calcium chelator) alone reduced the pH(i) recovery rate below control levels and impaired the effect of ANG II, in a way similar to that of trimethoxy benzoate (a blocker of Ca(+2) (i) mobilization). We conclude that ANG II regulates rat proximal tubule vacuolar H(+)-ATPase by a PKA-independent mechanism and that PKC and intracellular calcium play a critical role in this regulation.


Assuntos
Angiotensina II/farmacologia , Túbulos Renais Proximais/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Transdução de Sinais/fisiologia , Vacúolos/enzimologia , Cálcio/fisiologia , Células Cultivadas , AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Citosol/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Microscopia de Fluorescência , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/fisiologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Receptores de Angiotensina/efeitos dos fármacos , Receptores de Angiotensina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/fisiologia , Sódio/fisiologia , Vacúolos/efeitos dos fármacos
17.
Am J Physiol Renal Physiol ; 291(1): F129-39, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16495213

RESUMO

We studied the proton secretion mechanisms involved with pHi regulation in immortalized rat proximal tubule cells (IRPTC), a SV40-immortalized cell line derived from rat proximal tubule, and characterized the effects of serum deprivation on them. Using pHi measurements with the fluorescent probe BCECF, we demonstrated that the IRPTC express both Na+/H+ exchanger and H+-ATPase, but only NHE1 is modulated by serum deprivation. In these cells, 24 h of serum starvation increased pHi from 7.08+/-0.008 (n=34) to 7.18+/-0.018 (n=33) as well as the pH recovery rate from intracellular acidification with NH4Cl from 0.29+/-0.022 pH U/min (n=14) to 0.50+/-0.024 pH U/min (n=14), without modifying their buffering capacity. These effects were followed by several modifications in morphological features, indicating an increase in differentiation status. The altered activity of NHE1 was consistent with an increase of both transcription and translation of the antiporter, as the utilization of actinomycin D and cycloheximide significantly inhibited the upregulation of NHE1 induced by serum withdrawal. Inhibition of tyrosine phosphorylation by genistein blocked the serum deprivation-dependent activation of NHE. Moreover, the pharmacological inhibition of MEK1/2, the upstream activator of ERK1/2 by UO-126, significantly inhibited the stimulatory effect of serum starvation on Na+/H+ exchanger activity, whereas the putative p38 MAPK inhibitor SB-203580 failed to cause any effect on pHi recovery rates. Our findings indicate that during IRPTC differentiation by serum deprivation, there was a net enhancement of NHE1 activity. This upregulation of NHE by serum removal was consistent with an increase of RNA and protein synthesis of the exchanger, which depends on tyrosine kinase phosphorylation and ERK pathway activation.


Assuntos
Diferenciação Celular/fisiologia , Túbulos Renais Proximais/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Animais , Linhagem Celular , Cicloeximida/farmacologia , Dactinomicina/farmacologia , Regulação da Expressão Gênica , Genisteína/farmacologia , Concentração de Íons de Hidrogênio , MAP Quinase Quinase Quinases/análise , MAP Quinase Quinase Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/análise , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas Tirosina Quinases/análise , Proteínas Tirosina Quinases/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Ratos , Soro/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/fisiologia , Transcrição Gênica/fisiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA