Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 19(46): e2303940, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37469192

RESUMO

The accelerated development of antitumor immunotherapies in recent years has brought immunomodulation into the spotlight. These include immunotherapeutic treatments with dendritic cell (DC)-based vaccines which can elicit tumor-specific immune responses and prolong survival. However, this personalized treatment has several drawbacks, including being costly, labor-intensive, and time consuming. This has sparked interest in producing artificial dendritic cells (aDCs) to open up the possibility of standardized "off-the-shelf" protocols and circumvent the cumbersome and expensive personalized medicine. aDCs take advantage of materials that can be designed and tailored for specific clinical applications. Here, an overview of the immunobiology underlying antigen presentation by DCs is provided in an attempt to select the key features to be mimicked and/or improved through the development of aDCs. The inherent properties of aDCs that greatly impact their performance in vivo and, consequently, the fate of the triggered immune response are also outlined.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Células Dendríticas , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Medicina de Precisão
2.
Pharmaceutics ; 15(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36986686

RESUMO

Dendritic cells (DCs) are the most specialized and proficient antigen-presenting cells. They bridge innate and adaptive immunity and display a powerful capacity to prime antigen-specific T cells. The interaction of DCs with the receptor-binding domain of the spike (S) protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pivotal step to induce effective immunity against the S protein-based vaccination protocols, as well as the SARS-CoV-2 virus. Herein, we describe the cellular and molecular events triggered by virus-like particles (VLPs) containing the receptor-binding motif from the SARS-CoV-2 spike protein in human monocyte-derived dendritic cells, or, as controls, in the presence of the Toll-like receptors (TLR)3 and TLR7/8 agonists, comprehending the events of dendritic cell maturation and their crosstalk with T cells. The results demonstrated that VLPs boosted the expression of major histocompatibility complex molecules and co-stimulatory receptors of DCs, indicating their maturation. Furthermore, DCs' interaction with VLPs promoted the activation of the NF-kB pathway, a very important intracellular signalling pathway responsible for triggering the expression and secretion of proinflammatory cytokines. Additionally, co-culture of DCs with T cells triggered CD4+ (mainly CD4+Tbet+) and CD8+ T cell proliferation. Our results suggested that VLPs increase cellular immunity, involving DC maturation and T cell polarization towards a type 1 T cells profile. By providing deeper insight into the mechanisms of activation and regulation of the immune system by DCs, these findings will enable the design of effective vaccines against SARS-CoV-2.

3.
Cancers (Basel) ; 15(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36765690

RESUMO

Triple-negative breast cancer (TNBC) encompasses multiple entities and is generally highly aggressive and metastatic. We aimed to determine the clinical and biological relevance of Sialyl-Lewis X and A (sLeX/A)-a fucosylated glycan involved in metastasis-in TNBC. Here, we studied tissues from 50 TNBC patients, transcripts from a TNBC dataset from The Cancer Genome Atlas (TCGA) database, and a primary breast cancer cell line. All 50 TNBC tissue samples analysed expressed sLeX/A. Patients with high expression of sLeX/A had 3 years less disease-free survival than patients with lower expression. In tissue, sLeX/A negatively correlated with cytokeratins 5/6 (CK5/6, which was corroborated by the inverse correlation between fucosyltransferases and CK5/6 genes. Our observations were confirmed in vitro when inhibition of sLeX/A remarkably increased expression of CK5/6, followed by a decreased proliferation and invasion capacity. Among the reported glycoproteins bearing sLeX/A and based on the STRING tool, α6 integrin showed the highest interaction score with CK5/6. This is the first report on the sLeX/A expression in TNBC, highlighting its association with lower disease-free survival and its inverse crosstalk with CK5/6 with α6 integrin as a mediator. All in all, sLeX/A is critical for TNBC malignancy and a potential prognosis biomarker and therapeutic target.

4.
Cell Mol Life Sci ; 79(4): 213, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35344105

RESUMO

Endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which are key events in the initiation and/or progression of several diseases, are correlated with alterations at ER-mitochondria contact sites, the so-called "Mitochondria-Associated Membranes" (MAMs). These intracellular structures are also implicated in NLRP3 inflammasome activation which is an important driver of sterile inflammation, however, the underlying molecular basis remains unclear. This work aimed to investigate the role of ER-mitochondria communication during ER stress-induced NLRP3 inflammasome activation in both peripheral and central innate immune systems, by using THP-1 human monocytes and BV2 microglia cells, respectively, as in vitro models. Markers of ER stress, mitochondrial dynamics and mass, as well as NLRP3 inflammasome activation were evaluated by Western Blot, IL-1ß secretion was measured by ELISA, and ER-mitochondria contacts were quantified by transmission electron microscopy. Mitochondrial Ca2+ uptake and polarization were analyzed with fluorescent probes, and measurement of aconitase and SOD2 activities monitored mitochondrial ROS accumulation. ER stress was demonstrated to activate the NLRP3 inflammasome in both peripheral and central immune cells. Studies in monocytes indicate that ER stress-induced NLRP3 inflammasome activation occurs by a Ca2+-dependent and ROS-independent mechanism, which is coupled with upregulation of MAMs-resident chaperones, closer ER-mitochondria contacts, as well as mitochondrial depolarization and impaired dynamics. Moreover, enhanced ER stress-induced NLRP3 inflammasome activation in the immune system was found associated with pathological conditions since it was observed in monocytes derived from bipolar disorder (BD) patients, supporting a pro-inflammatory status in BD. In conclusion, by demonstrating that ER-mitochondria communication plays a key role in the response of the innate immune cells to ER stress, this work contributes to elucidate the molecular mechanisms underlying NLRP3 inflammasome activation under stress conditions, and to disclose novel potential therapeutic targets for diseases associated with sterile inflammation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse do Retículo Endoplasmático , Humanos , Sistema Imunitário , Mitocôndrias
5.
Rev Med Virol ; 32(3): e2290, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34534372

RESUMO

The novel coronavirus disease 2019 (Covid-19) first appeared in Wuhan and has so far killed more than four million people worldwide. Men are more affected than women by Covid-19, but the cellular and molecular mechanisms behind these differences are largely unknown. One plausible explanation is that differences in sex hormones could partially account for this distinct prevalence in both sexes. Accordingly, several papers have reported a protective role of 17ß-estradiol during Covid-19, which might help explain why women appear less likely to die from Covid-19 than men. 17ß-estradiol is the predominant and most biologically active endogenous estrogen, which signals through estrogen receptor α, estrogen receptor ß, and G protein-coupled estrogen receptor 1. These receptors are expressed in mature cells from the innate and the adaptive immune system, particularly on dendritic cells (DCs), suggesting that estrogens could modulate their effector functions. DCs are the most specialized and proficient antigen-presenting cells, acting at the interface of innate and adaptive immunity with a powerful capacity to prime antigen-specific naive CD8+ T cells. DCs are richly abundant in the lung where they respond to viral infection. A relative increase of mature DCs in broncho-alveolar lavage fluids from Covid-19 patients has already been reported. Here we will describe how SARS-CoV-2 acts on DCs, the role of estrogen on DC immunobiology, summarise the impact of sex hormones on the immune response against Covid-19, and explore clinical trials regarding Covid-19.


Assuntos
COVID-19 , Células Dendríticas , Estradiol , Estrogênios , Feminino , Humanos , Masculino , SARS-CoV-2
6.
Eur J Pharm Biopharm ; 161: 4-14, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33561524

RESUMO

Pancreatic cancer (PC) is one of the deadliest cancers with a very short rate of survival and commonly without symptoms in its early stage. This absence of symptoms can lead to a late diagnosis associated with an advanced metastasis process, for which therapy is not effective. Although with extensive research in this field, the 5-year survival rate has not increased significantly. Notwithstanding, novel insights on risk factors, genetic mutations and molecular mechanisms pave the way for novel therapeutics that urge with a significant part of PC patients presenting resistance to chemotherapy treatments. Exosomes are presented as a promising strategy, working as delivery systems, since they can transport and release their cargoes after fusing with the membrane of pancreatic cells. Exosomes present advantages over liposomes, being less toxic and reaching higher levels in the bloodstream, working as molecule carriers that can inhibit oncogenes, activating tumor suppressor genes and inducing immune responses as well as controlling cell growth. This review intends to provide an overview about the scientific and clinical studies regarding the entire process, from isolation and purification of exosomes, to their design and transformation into anti-oncogenic drug delivering systems, particularly to target PC cells.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Portadores de Fármacos/metabolismo , Desenho de Fármacos , Humanos , Neoplasias Pancreáticas
7.
Pharmacol Res ; 164: 105309, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33212291

RESUMO

In the last decade, immunotherapy led to a paradigm shift in the treatment of numerous malignancies. Alongside with monoclonal antibodies blocking programmed cell death receptor-1 (PD-1)/PD-L1 and cytotoxic T- lymphocyte antigen 4 (CTLA-4) immune checkpoints, cell-based approaches such as CAR-T cells and dendritic cell (DC) vaccines have strongly contributed to pushing forward this thrilling field. While initial strategies were mainly focused on monotherapeutic regimens, it is now consensual that the combination of immunotherapies tackling multiple cancer hallmarks can result in superior clinical outcomes. Here, we review in depth the pharmacological combination of DC-based vaccines that boost tumour elimination by eliciting and expanding effector immune cells, with the PD-1 inhibitor Nivolumab that allows blocking key tumour immune escape mechanisms. This combination represents an important step in cancer therapy, with a significant enhancement in patient survival in several types of tumours, paving an important way in establishing combinatorial immunotherapeutic strategies as first-line treatments.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Imunoterapia , Neoplasias/terapia , Nivolumabe/administração & dosagem , Animais , Terapia Combinada , Humanos , Receptor de Morte Celular Programada 1/antagonistas & inibidores
8.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096789

RESUMO

Experimental evidence highlights nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a molecular target in Alzheimer's disease (AD). The well-known effect of electrophilic cysteine-reactive skin allergens on Nrf2-activation led to the hypothesis that these compounds could have a therapeutic role in AD. This was further supported by the neuroprotective activity of the skin allergen dimethyl fumarate (DMF), demonstrated in in vivo models of neurodegenerative diseases. We evaluated the effect of the cysteine-reactive allergens 1,4-phenylenediamine (PPD) and methyl heptine carbonate (MHC) on (1) neuronal redox imbalance and calcium dyshomeostasis using N2a wild-type (N2a-wt) and human APP-overexpressing neuronal cells (wild-type, N2a-APPwt) and (2) on neuroinflammation, using microglia BV-2 cells exposed to LPS (lipopolysaccharide). Phthalic anhydride (PA, mainly lysine-reactive), was used as a negative control. DMF, PPD and MHC increased Hmox1 gene and HMOX1 protein levels in N2a-APPwt cells suggesting Nrf2-dependent antioxidant activity. MHC, but also PA, rescued N2a-APPwt mitochondrial membrane potential and calcium levels in a Nrf2-independent pathway. All the chemicals showed anti-inflammatory activity by decreasing iNOS protein in microglia. This work highlights the potential neuroprotective and anti-inflammatory role of the selected skin allergens in in vitro models of AD, and supports further studies envisaging the validation of the results using in vivo AD models.


Assuntos
Alérgenos/farmacologia , Doença de Alzheimer/patologia , Cálcio/metabolismo , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Caprilatos/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Heme Oxigenase-1/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Fator 2 Relacionado a NF-E2/genética , Fenilenodiaminas/farmacologia , Pele/imunologia
9.
Pharmaceutics ; 12(2)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075343

RESUMO

Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointed explanations for their lack of robustness. Therefore, a great effort has been made to identify DC subsets with superior features for the establishment of effective anti-tumor responses and to apply them in therapeutic approaches. Among characterized human DC subpopulations, conventional type 1 DCs (cDC1) have emerged as a highly desirable tool for empowering anti-tumor immunity. This DC subset excels in its capacity to prime antigen-specific cytotoxic T cells and to activate natural killer (NK) and natural killer T (NKT) cells, which are critical factors for an effective anti-tumor immune response. Here, we sought to revise the immunobiology of cDC1 from their ontogeny to their development, regulation and heterogeneity. We also address the role of this functionally thrilling DC subset in anti-tumor immune responses and the most recent efforts to apply it in cancer immunotherapy.

10.
Front Immunol ; 11: 593363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613517

RESUMO

Dendritic cell (DC)-based antitumor vaccines have proven to be a safe approach, but often fail to generate robust results between trials. Translation to the clinic has been hindered in part by the lack of standard operation procedures for vaccines production, namely the definition of optimal culture conditions during ex-vivo DC differentiation. Here we sought to compare the ability of three clinical grade serum-free media, DendriMACS, AIM-V, and X-VIVO 15, alongside with fetal bovine serum-supplemented Roswell Park Memorial Institute Medium (RPMI), to support the differentiation of monocyte-derived DCs (Mo-DCs). Under these different culture conditions, phenotype, cell metabolomic profiles, response to maturation stimuli, cytokines production, allogenic T cell stimulatory capacity, as well as priming of antigen-specific CD8+ T cells and activation of autologous natural killer (NK) cells were analyzed. Immature Mo-DCs differentiated in AIM-V or X-VIVO 15 presented lower levels of CD1c, CD1a, and higher expression of CD11c, when compared to cells obtained with DendriMACS. Upon stimulation, only AIM-V or X-VIVO 15 DCs acquired a full mature phenotype, which supports their enhanced capacity to polarize T helper cell type 1 subset, to prime antigen-specific CD8+ T cells and to activate NK cells. CD8+ T cells and NK cells resulting from co-culture with AIM-V or X-VIVO 15 DCs also showed superior cytolytic activity. 1H nuclear magnetic resonance-based metabolomic analysis revealed that superior DC immunostimulatory capacities correlate with an enhanced catabolism of amino acids and glucose. Overall, our data highlight the impact of critically defining the culture medium used in the production of DCs for clinical application in cancer immunotherapy. Moreover, the manipulation of metabolic state during differentiation could be envisaged as a strategy to enhance desired cell characteristics.


Assuntos
Técnicas de Cultura Celular por Lotes , Meios de Cultura Livres de Soro , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunoterapia , Cultura Primária de Células/métodos , Técnicas de Cultura Celular por Lotes/métodos , Técnicas de Cultura Celular por Lotes/normas , Biomarcadores , Diferenciação Celular , Citocinas/metabolismo , Testes Imunológicos de Citotoxicidade , Células Dendríticas/citologia , Humanos , Imunofenotipagem , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Fagocitose , Cultura Primária de Células/normas
11.
BMC Cancer ; 18(1): 495, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29716546

RESUMO

BACKGROUND: The E-selectin ligands expressed by cancer cells mediate adhesion of circulating cancer cells to endothelial cells, as well as within tissue microenvironments important for tumor progression and metastasis. The identification of E-selectin ligands within cancer tissue could yield new biomarkers for patient stratification and aid in identifying novel therapeutic targets. The determinants of selectin ligands consist of sialylated tetrasaccharides, the sialyl Lewis X and A (sLeX and sLeA), displayed on protein or lipid scaffolds. Standardized procedures for immunohistochemistry make use of the antibodies against sLeX and/or sLeA. However, antibody binding does not define E-selectin binding activity. METHODS: In this study, we developed an immunohistochemical staining technique, using E-selectin-human Ig Fc chimera (E-Ig) to characterize the expression and localization of E-selectin binding sites on paraffin-embedded sections of different cancer tissue. RESULTS: E-Ig successfully stained cancer cells with high specificity. The E-Ig staining show high reactivity scores in colon and lung adenocarcinoma and moderate reactivity in triple negative breast cancer. Compared with reactivity of antibody against sLeX/A, the E-Ig staining presented higher specificity to cancer tissue with better defined borders and less background. CONCLUSIONS: The E-Ig staining technique allows the qualitative and semi-quantitative analysis of E-selectin binding activity on cancer cells. The development of accurate techniques for detection of selectin ligands may contribute to better diagnostic and better understanding of the molecular basis of tumor progression and metastasis.


Assuntos
Selectina E/metabolismo , Ligantes , Neoplasias/metabolismo , Biomarcadores , Selectina E/genética , Humanos , Imuno-Histoquímica , Neoplasias/genética , Neoplasias/patologia , Inclusão em Parafina
12.
Mol Oncol ; 12(5): 579-593, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29215790

RESUMO

Breast cancer tissue overexpresses fucosylated glycans, such as sialyl-Lewis X/A (sLeX/A ), and α-1,3/4-fucosyltransferases (FUTs) in relation to increased disease progression and metastasis. These glycans in tumor circulating cells mediate binding to vascular E-selectin, initiating tumor extravasation. However, their role in breast carcinogenesis is still unknown. Here, we aimed to define the contribution of the fucosylated structures, including sLeX/A , to cell adhesion, cell signaling, and cell proliferation in invasive ductal carcinomas (IDC), the most frequent type of breast cancer. We first analyzed expression of E-selectin ligands in IDC tissue and established primary cell cultures from the tissue. We observed strong reactivity with E-selectin and anti-sLeX/A antibodies in both IDC tissue and cell lines, and expression of α-1,3/4 FUTs FUT4, FUT5, FUT6, FUT10, and FUT11. To further assess the role of fucosylation in IDC biology, we immortalized a primary IDC cell line with human telomerase reverse transcriptase to create the 'CF1_T cell line'. Treatment with 2-fluorofucose (2-FF), a fucosylation inhibitor, completely abrogated its sLeX/A expression and dramatically reduced adherence of CF1_T cells to E-selectin under hemodynamic flow conditions. In addition, 2-FF-treated CF1_T cells showed a reduced migratory ability, as well as decreased cell proliferation rate. Notably, 2-FF treatment lowered the growth factor expression of CF1_T cells, prominently for FGF2, vascular endothelial growth factor, and transforming growth factor beta, and negatively affected activation of signal-regulating protein kinases 1 and 2 and p38 mitogen-activated protein kinase signaling pathways. These data indicate that fucosylation licenses several malignant features of IDC, such as cell adhesion, migration, proliferation, and growth factor expression, contributing to tumor progression.


Assuntos
Neoplasias da Mama/enzimologia , Carcinoma Ductal de Mama/enzimologia , Selectina E/metabolismo , Fucosiltransferases/antagonistas & inibidores , Oligossacarídeos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adulto , Idoso , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Selectina E/genética , Feminino , Fucose/análogos & derivados , Fucose/farmacologia , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pessoa de Meia-Idade , Invasividade Neoplásica , Cultura Primária de Células , Antígeno Sialil Lewis X , Proteínas Quinases p38 Ativadas por Mitógeno/genética
13.
Biomolecules ; 5(3): 1783-809, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26270678

RESUMO

The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment.


Assuntos
Anticorpos/imunologia , Antígenos Glicosídicos Associados a Tumores/imunologia , Animais , Anticorpos/genética , Anticorpos/uso terapêutico , Engenharia Genética , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia
14.
Mol Oncol ; 8(3): 753-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24656965

RESUMO

Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how they contribute to the tilt immune response remains poorly defined. In this study, we sought to evaluate the impact of the malignant phenotype-associated glycan, sialyl-Tn (STn) in the function of the key orchestrators of the immune response, the dendritic cells (DCs). In high grade bladder cancer tissue, the STn antigen is significantly overexpressed and correlated with the increased expression of ST6GALNAC1 sialyltransferase. Bladder cancer tissue presenting elevated expression of ST6GALNAC1 showed a correlation with increased expression of CD1a, a marker for bladder immature DCs and showed concomitant low levels of Th1-inducing cytokines IL-12 and TNF-α. In vitro, human DCs co-incubated with STn(+) bladder cancer cells, had an immature phenotype (MHC-II(low), CD80(low) and CD86(low)) and were unresponsive to further maturation stimuli. When contacting with STn(+) cancer cells, DCs expressed significantly less IL-12 and TNF-α. Consistent with a tolerogenic DC profile, T cells that were primed by DCs pulsed with antigens derived from STn(+) cancer cells were not activated and showed a FoxP3(high) IFN-γ(low) phenotype. Blockade of STn antigens and of STn(+) glycoprotein, CD44 and MUC1, in STn(+) cancer cells was able to lower the induction of tolerance and DCs become more mature. Overall, our data suggest that STn-expressing cancer cells impair DC maturation and endow DCs with a tolerogenic function, limiting their capacity to trigger protective anti-tumour T cell responses. STn antigens and, in particular, STn(+) glycoproteins are potential targets for circumventing tumour-induced tolerogenic mechanisms.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Células Dendríticas/imunologia , Linfócitos T/imunologia , Neoplasias da Bexiga Urinária/imunologia , Idoso , Idoso de 80 Anos ou mais , Antígenos Glicosídicos Associados a Tumores/análise , Linhagem Celular Tumoral , Células Cultivadas , Células Dendríticas/patologia , Humanos , Receptores de Hialuronatos/análise , Receptores de Hialuronatos/imunologia , Imunidade Inata , Pessoa de Meia-Idade , Fagocitose , Linfócitos T/patologia , Bexiga Urinária/imunologia , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia
15.
Immunology ; 138(3): 235-45, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23113614

RESUMO

Dendritic cells (DCs) play an essential role in immunity against bacteria by phagocytosis and by eliciting adaptive immune responses. Previously, we demonstrated that human monocyte-derived DCs (MDDCs) express a high content of cell surface α2,6-sialylated glycans. However, the relative role of these sialylated structures in phagocytosis of bacteria has not been reported. Here, we show that treatment with a sialidase significantly improved the capacity of both immature and mature MDDCs to phagocytose Escherichia coli. Desialylated MDDCs had a significantly more mature phenotype, with higher expression of MHC molecules and interleukin (IL)-12, tumour necrosis factor-α, IL-6 and IL-10 cytokines, and nuclear factor-κB activation. T lymphocytes primed by desialylated MDDCs expressed more interferon-γ when compared with priming by sialylated MDDCs. Improved phagocytosis required E. coli sialic acids, indicating a mechanism of host-pathogen interaction dependent on sialic acid moieties. The DCs harvested from mice deficient in the ST6Gal.1 sialyltransferase showed improved phagocytosis capacity, demonstrating that the observed sialidase effect was a result of the removal of α2,6-sialic acid. The phagocytosis of different pathogenic E. coli isolates was also enhanced by sialidase, which suggests that modifications on MDDC sialic acids may be considered in the development of MDDC-based antibacterial therapies. Physiologically, our findings shed new light on mechanisms that modulate the function of both immature and mature MDDCs, in the context of host-bacteria interaction. Hence, with particular relevance to DC-based therapies, the engineering of α2,6-sialic acid cell surface is a novel possibility to fine tune DC phagocytosis and immunological potency.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ácido N-Acetilneuramínico/deficiência , Fagocitose/imunologia , Animais , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/imunologia , Humanos , Camundongos , Camundongos Knockout , Ácido N-Acetilneuramínico/metabolismo , Fagocitose/genética , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA