Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1268196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908369

RESUMO

In many infectious diseases, the pathogen-induced inflammatory response could result in protective immunity that should be regulated to prevent tissue damage and death. In fact, in Trypanosoma cruzi infection, the innate immune and the inflammatory response should be perfectly controlled to avoid significant lesions and death. Here, we investigate the role of Blimp-1 expression in T cells in resistance to T. cruzi infection. Therefore, using mice with Blimp-1 deficiency in T cells (CKO) we determined its role in the controlling parasites growth and lesions during the acute phase of infection. Infection of mice with Blimp-1 ablation in T cells resulted failure the cytotoxic CD8+ T cells and in marked Th1-mediated inflammation, high IFN-γ and TNF production, and activation of inflammatory monocyte. Interestingly, despite high nitric-oxide synthase activation (NOS-2), parasitemia and mortality in CKO mice were increased compared with infected WT mice. Furthermore, infected-CKO mice exhibited hepatic lesions characteristic of steatosis, with significant AST and ALT activity. Mechanistically, Blimp-1 signaling in T cells induces cytotoxic CD8+ T cell activation and restricts parasite replication. In contrast, Blimp-1 represses the Th1 response, leading to a decreased monocyte activation, less NOS-2 activation, and, consequently preventing hepatic damage and dysfunction. These data demonstrate that T. cruzi-induced disease is multifactorial and that the increased IFN-γ, NO production, and dysfunction of CD8+ T cells contribute to host death. These findings have important implications for the design of potential vaccines against Chagas disease.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Camundongos , Linfócitos T CD8-Positivos , Inflamação/patologia , Transdução de Sinais
2.
PLoS One ; 17(6): e0269447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35666748

RESUMO

Leishmaniasis is a public health issue. It is among the top five parasitic illnesses worldwide and is one of the most neglected diseases. The current treatment disease includes limitations of toxicity, variable efficacy, high costs and inconvenient doses and treatment schedules. LASSBio-1736 was described as antileishmanial drug-candidate to cutaneous leishmaniasis, displaying plasma stability and with no preliminary signals of hepatic or renal toxicity. In this paper, we described the in vitro pharmacokinetic study of LASSBio-1491 (a less lipophilic isostere of LASSBio-1736) and it is in vitro and in vivo leishmanicidal activities. Our results demonstrated that LASSBio-1491 has high permeability, satisfactory aqueous solubility, long plasma and microsomal half-lives and low in vitro systemic clearance, suggesting a pharmacokinetic profile suitable for its use in a single daily dose. The antileishmanial effect of LASSBio-1491 was confirmed in vitro and in vivo. It exhibited no cytotoxic effect to mammalian cells and displayed good in -vivo effect against BALB/c mice infected with Leishmania major LV39 substrain, being 3 times more efficient than glucantime.


Assuntos
Antiprotozoários , Leishmania major , Leishmaniose Cutânea , Animais , Antiprotozoários/farmacocinética , Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Mamíferos , Camundongos , Camundongos Endogâmicos BALB C , Doenças Negligenciadas/tratamento farmacológico
3.
Front Immunol ; 13: 835711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585983

RESUMO

A key point of immunity against protozoan Leishmania parasites is the development of an optimal T cell response, which includes a low apoptotic rate, high proliferative activity and polyfunctionality. During acute infection, antigen-specific T cells recognize the pathogen resulting in pathogen control but not elimination, promoting the development and the maintenance of a population of circulating effector cells that mount rapid response quickly after re-exposure to the parasite. However, in the case of visceral disease, the functionality of specific T cells is lost during chronic infection, resulting in inferior effector functions, poor response to specific restimulation, and suboptimal homeostatic proliferation, a term referred to as T cell exhaustion. Multiple factors, including parasite load, infection duration and host immunity, affect T lymphocyte exhaustion. These factors contribute to antigen persistence by promoting inhibitory receptor expression and sustained production of soluble mediators, influencing suppressive cell function and the release of endogenous molecules into chronically inflamed tissue. Together, these signals encourage several changes, reprogramming cells into a quiescent state, which reflects disease progression to more severe forms, and development of acquired resistance to conventional drugs to treat the disease. These points are discussed in this review.


Assuntos
Leishmania , Leishmaniose Visceral , Humanos , Carga Parasitária , Linfócitos T
4.
Front Immunol ; 13: 784463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370994

RESUMO

Visceral leishmaniasis (VL) is a vector-borne infectious disease that can be potentially fatal if left untreated. In Brazil, it is caused by Leishmania infantum parasites. Blood transcriptomics allows us to assess the molecular mechanisms involved in the immunopathological processes of several clinical conditions, namely, parasitic diseases. Here, we performed mRNA sequencing of peripheral blood from patients with visceral leishmaniasis during the active phase of the disease and six months after successful treatment, when the patients were considered clinically cured. To strengthen the study, the RNA-seq data analysis included two other non-diseased groups composed of healthy uninfected volunteers and asymptomatic individuals. We identified thousands of differentially expressed genes between VL patients and non-diseased groups. Overall, pathway analysis corroborated the importance of signaling involving interferons, chemokines, Toll-like receptors and the neutrophil response. Cellular deconvolution of gene expression profiles was able to discriminate cellular subtypes, highlighting the contribution of plasma cells and NK cells in the course of the disease. Beyond the biological processes involved in the immunopathology of VL revealed by the expression of protein coding genes (PCGs), we observed a significant participation of long noncoding RNAs (lncRNAs) in our blood transcriptome dataset. Genome-wide analysis of lncRNAs expression in VL has never been performed. lncRNAs have been considered key regulators of disease progression, mainly in cancers; however, their pattern regulation may also help to understand the complexity and heterogeneity of host immune responses elicited by L. infantum infections in humans. Among our findings, we identified lncRNAs such as IL21-AS1, MIR4435-2HG and LINC01501 and coexpressed lncRNA/mRNA pairs such as CA3-AS1/CA1, GASAL1/IFNG and LINC01127/IL1R1-IL1R2. Thus, for the first time, we present an integrated analysis of PCGs and lncRNAs by exploring the lncRNA-mRNA coexpression profile of VL to provide insights into the regulatory gene network involved in the development of this inflammatory and infectious disease.


Assuntos
Leishmania infantum , Leishmaniose Visceral , Leishmaniose , RNA Longo não Codificante , Humanos , Leishmania infantum/genética , Leishmaniose Visceral/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma
5.
Front Immunol ; 12: 779534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970264

RESUMO

This is a case series study to evaluate immunological markers associated with schistosomiasis advanced fibrosis, including 69 patients from an endemic area from the State of Sergipe and from the Hepatology Service of the University Hospital in Sergipe, Brazil. Hepatic fibrosis was classified based on Niamey protocol for ultrasonography (US). Immune response to Schistosoma mansoni antigens was evaluated by stimulating peripheral blood mononuclear cells (PBMCs) from these patients with either adult worm (SWAP-10 µg/ml) or egg (SEA-10 µg/ml) antigens or purified protein derivative of turberculin (PPD-10 µg/ml) or phytohemagglutinin (PHA-1 µg/ml) for 72 h. The levels of IFN-γ, TNF-α, IL-5, IL-10, and IL-17 were measured in these supernatants by ELISA and IL-9 by Luminex. Single nucleotide polymorphisms in IL-17, IL10, and CD209 genes were genotyped using TaqMan probe by qPCR. Higher levels of IL-9, IL-10, and IL-17 were found in PBMC supernatants of patients with advanced hepatic fibrosis. Direct correlations were detected between IL-9 and IL-17 levels with US spleen sizes, portal vein diameters, and periportal thickening. The CD209 rs2287886 AG polymorphism patients produce higher IL-17 levels. Together, these data suggest a role of these cytokines in the immunopathogenesis of advanced fibrosis in human schistosomiasis.


Assuntos
Antígenos de Helmintos/imunologia , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-9/metabolismo , Leucócitos Mononucleares/metabolismo , Cirrose Hepática/sangue , Schistosoma mansoni/imunologia , Esquistossomose mansoni/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Estudos de Casos e Controles , Moléculas de Adesão Celular/genética , Células Cultivadas , Criança , Feminino , Interações Hospedeiro-Parasita , Humanos , Interleucina-10/genética , Interleucina-17/genética , Lectinas Tipo C/genética , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/parasitologia , Cirrose Hepática/imunologia , Cirrose Hepática/parasitologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular/genética , Schistosoma mansoni/patogenicidade , Esquistossomose mansoni/genética , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Adulto Jovem
6.
Front Nutr ; 8: 833666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155534

RESUMO

OBJECTIVE: To evaluate the clinical efficacy of a mixture of probiotics (Lactobacillus and Bifidobacterium) in children and adolescents with atopic dermatitis (AD) and the effects on sensitization, inflammation, and immunological tolerance. METHODS: In this double-blind, randomized, placebo-controlled clinical trial, we enrolled 60 patients aged between 6 months and 19 years with mild, moderate, or severe AD, according to the criteria proposed by Hanifin and Rajka. Patients were stratified to receive one gram per day of probiotics or placebo for 6 months. The primary outcome was a decrease in SCORing Atopic Dermatitis (SCORAD). Secondary outcomes were to assess the role of probiotics on the use of topical and oral medicines (standard treatment), serum IgE levels, skin prick test (SPT), and tolerogenic and inflammatory cytokines. Background therapy was maintained. RESULTS: Forty patients completed the study (24 probiotics, 16 placebo). After treatment for six months, the clinical response was significantly better in the probiotics group; the SCORAD decreased [mean difference (MD) 27.69 percentage points; 95% confidence interval (CI), 2.44-52.94], even after adjustment for co-variables (MD 32.33 percentage points; 95%CI, 5.52-59.13), especially from the third month of treatment on. The reduction of the SCORAD in probiotic group persisted for three more months after the treatment had been discontinued, even after adjustment for co-variables (MD 14.24 percentage points; 95%CI, 0.78-27.70). Patients in the probiotics group required topical immunosuppressant less frequently at 6 and 9 months. No significant changes were found for IgE levels, SPT and cytokines. CONCLUSIONS: Children and adolescents with AD presented a significant clinical response after 6 months with a mixture of probiotics (Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus paracasei, and Bifidobacterium lactis. However, this clinical benefit is related to treatment duration. Probiotics should be considered as an adjuvant treatment for AD.

7.
PLoS Pathog ; 16(3): e1008435, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32210480

RESUMO

A striking feature of human visceral leishmaniasis (VL) is chronic inflammation in the spleen and liver, and VL patients present increased production levels of multiple inflammatory mediators, which contribute to tissue damage and disease severity. Here, we combined an experimental model with the transcriptional profile of human VL to demonstrate that the TLR4-IFN-ß pathway regulates the chronic inflammatory process and is associated with the asymptomatic form of the disease. Tlr4-deficient mice harbored fewer parasites in their spleen and liver than wild-type mice. TLR4 deficiency enhanced the Th1 immune response against the parasite, which was correlated with an increased activation of dendritic cells (DCs). Gene expression analyses demonstrated that IRF1 and IFN-ß were expressed downstream of TLR4 after infection. Accordingly, IRF1- and IFNAR-deficient mice harbored fewer parasites in the target organs than wild-type mice due to having an increased Th1 immune response. However, the absence of TLR4 or IFNAR increased the serum transaminase levels in infected mice, indicating the presence of liver damage in these animals. In addition, IFN-ß limits IFN-γ production by acting directly on Th1 cells. Using RNA sequencing analysis of human samples, we demonstrated that the transcriptional signature for the TLR4 and type I IFN (IFN-I) pathways was positively modulated in asymptomatic subjects compared with VL patients and thus provide direct evidence demonstrating that the TLR4-IFN-I pathway is related to the nondevelopment of the disease. In conclusion, our results demonstrate that the TLR4-IRF1 pathway culminates in IFN-ß production as a mechanism for dampening the chronic inflammatory process and preventing immunopathology development.


Assuntos
Fator Regulador 1 de Interferon/imunologia , Interferon beta/imunologia , Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Células Th1/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Fator Regulador 1 de Interferon/genética , Interferon beta/genética , Leishmaniose Visceral/genética , Leishmaniose Visceral/patologia , Camundongos , Camundongos Knockout , Células Th1/patologia , Receptor 4 Toll-Like/genética
8.
Front Immunol ; 10: 2105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555297

RESUMO

Monocytes play key roles in the maintenance of homeostasis and in the control of the infection. Monocytes are recruited from the bone marrow to inflammatory sites and are essential for antimicrobial activity to limit tissue damage and promote adaptive T cell responses. Here, we investigated the role of Nuclear Factor of Activated T cells 1 (NFAT1) in the regulation of Ly6Chi inflammatory monocyte recruitment to the CNS upon T. gondii infection. We show that NFAT-1-deficient monocytes are unable to migrate to the CNS of T. gondii-infected mice. Moreover, NFAT1-/- mice are highly susceptible to chronic T. gondii infection due to a failure to control parasite replication in the CNS. The inhibition of Ly6Chi inflammatory monocyte recruitment to the CNS severely blocked CXCL10 production and consequently the migration of IFN-γ-producing CD4+ T cells. Moreover, the transfer of Ly6Chi monocytes to infected NFAT1-/- mice favored CD4+ T cell migration to the CNS and resulted in the inhibition of parasite replication and host defense. Together, these results demonstrated for the first time the contribution of NFAT1 to the regulation of Ly6Chi monocyte recruitment to the CNS and to resistance during chronic T. gondii infection.


Assuntos
Infecções Parasitárias do Sistema Nervoso Central/imunologia , Quimiotaxia de Leucócito/imunologia , Monócitos/imunologia , Fatores de Transcrição NFATC/imunologia , Toxoplasmose Animal/imunologia , Animais , Antígenos Ly/imunologia , Camundongos , Camundongos Knockout , Células Th1/imunologia , Toxoplasma/imunologia
9.
Cell Immunol ; 341: 103920, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078283

RESUMO

Localized cutaneous leishmaniasis (LCL) can ultimately progress to chronic ulcerated lesions with strong local inflammatory reactions. The functional role of certain inflammasomes in mediating inflammation caused by Leishmania braziliensis needs to be addressed. By combining PCR-array, quantitative real-time PCR and immunohistochemical analysis, we identified inflammasome genes, such as IL-1ß, NLRP3, NLRP1, NLRC5, AIM2 and P2RX7, that were upregulated in LCL patients. Temporal gene expression studies showed that the early phase of LCL displayed increased NLRP3 and reduced AIM2 and NLRP1 expression, while the late stages showed increased AIM2 and NLRP1 and lower NLRP3 expression. Our findings also showed that AIM2, NLRP1, and P2RX7 promoted susceptibility to experimental L. braziliensis infection. These results highlight the importance of inflammasome machinery in human LCL and suggest that inflammasome machinery plays a role in the acute and chronic phases of the disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a DNA/genética , Inflamassomos/genética , Leishmaniose Cutânea/genética , Receptores Purinérgicos P2X7/genética , Pele/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Adulto , Animais , Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Ligação a DNA/imunologia , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamassomos/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Leishmania braziliensis/imunologia , Leishmania braziliensis/patogenicidade , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas NLR , Receptores Purinérgicos P2X7/imunologia , Transdução de Sinais , Pele/parasitologia , Pele/patologia
10.
J Allergy Clin Immunol ; 143(3): 1119-1130.e3, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30096391

RESUMO

BACKGROUND: The transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp-1) has a key role in terminal differentiation in various T-cell subtypes. However, whether Blimp-1 regulates TH9 differentiation and its role in allergic inflammation are unknown. OBJECTIVE: We aimed to investigate the role of Blimp-1 in TH9 differentiation and in the pathogenesis of allergic airway inflammation. METHODS: In vitro TH9 differentiation, flow cytometry, ELISA, and real-time PCR were used to investigate the effects of Blimp-1 on TH9 polarization. T cell-specific Blimp-1-deficient mice, a model of allergic airway inflammation, and T-cell adoptive transfer to recombination-activating gene 1 (Rag-1)-/- mice were used to address the role of Blimp-1 in the pathogenesis of allergic inflammation. RESULTS: We found that Blimp-1 regulates TH9 differentiation because deleting Blimp-1 increased IL-9 production in CD4+ T cells in vitro. In addition, we showed that in T cell-specific Blimp-1-deficient mice, deletion of Blimp-1 in T cells worsened airway disease, and this worsening was inhibited by IL-9 neutralization. In asthmatic patients CD4+ T cells in response to TGF-ß plus IL-4 increased IL-9 expression and downregulated Blimp-1 expression compared with expression in healthy control subjects. Blimp-1 overexpression in human TH9 cells inhibited IL-9 expression. CONCLUSION: Blimp-1 is a pivotal negative regulator of TH9 differentiation and controls allergic inflammation.


Assuntos
Asma/imunologia , Diferenciação Celular , Interleucina-9/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/fisiologia , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Linhagem Celular , Humanos , Inflamação/imunologia , Interleucina-9/genética , Camundongos Transgênicos
11.
J Autoimmun ; 90: 49-58, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29426578

RESUMO

Rheumatoid arthritis (RA) is an autoimmune arthropathy characterized by chronic articular inflammation. Methotrexate (MTX) remains the first-line therapy for RA and its anti-inflammatory effect is associated with the maintenance of high levels of extracellular adenosine (ADO). Nonetheless, up to 40% of RA patients are resistant to MTX treatment and this is linked to a reduction of CD39 expression, an ectoenzyme involved in the generation of extracellular ADO by ATP metabolism, on circulating regulatory T cells (Tregs). However, the mechanism mediating the reduction of CD39 expression on Tregs is unknown. Here we demonstrated that the impairment in TGF-ß signalling lead to the reduction of CD39 expression on Tregs that accounts for MTX resistance. TGF-ß increases CD39 expression on Tregs via the activation of TGFBRII/TGFBRI, SMAD2 and the transcription factor CREB, which is activated in a p38-dependent manner and induces CD39 expression by promoting ENTPD1 gene transcription. Importantly, unresponsive patients to MTX (UR-MTX) show reduced expression of TGFBR2 and CREB1 and decreased levels of p-SMAD2 and p-CREB in Tregs compared to MTX-responsive patients (R-MTX). Furthermore, RA patients carrying at least one mutant allele for rs1431131 (AT or AA) of the TGFBR2 gene are significantly (p = 0.0006) associated with UR-MTX. Therefore, we have uncovered a molecular mechanism for the reduced CD39 expression on Tregs, and revealed potential targets for therapeutic intervention for MTX resistance.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Artrite Reumatoide/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Resistência a Medicamentos , Feminino , Regulação da Expressão Gênica , Frequência do Gene , Humanos , Masculino , Metotrexato/uso terapêutico , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais/genética , Proteína Smad2/metabolismo
12.
Front Immunol ; 8: 815, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775724

RESUMO

Adenosine is an endogenously released purine nucleoside that signals through four widely expressed G protein-coupled receptors: A1, A2A, A2B, and A3. Of these, A2AR is recognized as mediating major adenosine anti-inflammatory activity. During cutaneous leishmaniasis, adenosine induces immunosuppression, which promotes the establishment of infection. Herein, we demonstrated that A2AR signaling is exploited by Leishmania infantum parasites, the etiologic agent that causes Visceral Leishmaniasis, to successfully colonize the vertebrate host. A2AR gene-deleted mice exhibited a well-developed cellular reaction with a strong Th1 immune response in the parasitized organs. An intense infiltration of activated neutrophils into the disease-target organs was observed in A2AR-/- mice. These cells were characterized by high expression of CXCR2 and CD69 on their cell surfaces and increased cxcl1 expression. Interestingly, this phenotype was mediated by IFN-γ on the basis that a neutralizing antibody specific to this cytokine prevented neutrophilic influx into parasitized organs. In evaluating the immunosuppressive effects, we identified a decreased number of CD4+ FOXP3+ T cells and reduced il10 expression in A2AR-/- infected mice. During ex vivo cell culture, A2AR-/- splenocytes produced smaller amounts of IL-10. In conclusion, we demonstrated that the A2AR signaling pathway is detrimental to development of Th1-type adaptive immunity and that this pathway could be associated with the regulatory process. In particular, it promotes parasite surveillance.

13.
Acta Trop ; 172: 1-6, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28427965

RESUMO

T1/ST2 is a surface marker selectively expressed on type 2 helper (TH2) effector cells. As Leishmania infection in susceptible BALB/c mice have ascribed to a polarized TH2 response, this study aim to investigate the T1/ST2 (the receptor for IL-33), as a typical TH2 marker in the postulation that a shift towards a beneficial TH1 response would occur in the absence of ST2. For this, ST2 knockout (ST2-/-) and WT BALB/c mice were experimentally infected in the retro-orbital sinus with L. infantum. We showed that ST2-/- animals displayed better control of parasite burden in both spleen and liver tissues at different time points of chronic phases, and reduced spleenomegaly and hepatomegaly compared with the wild-type (WT) mice. This was associated with increased in the IFN-γ levels and expression by CD4+ and CD8+ lymphocytes. The inflammatory response encompasses transaminases (AST and ALT) releases and NO productions were remarkably lower in ST2-/- mice compared with WT. These data suggest that, ST2-/-) exert protection against L. infantum infection and probably shift the immune response toward TH1 induction.


Assuntos
Interleucina-33/imunologia , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/imunologia , Leishmaniose/imunologia , Células Th2/imunologia , Animais , Linfócitos T CD8-Positivos , Feminino , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Baço/imunologia
14.
Front Microbiol ; 8: 262, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28280488

RESUMO

Visceral leishmaniasis (VL) is a chronic and fatal disease caused by Leishmania infantum in Brazil. Leukocyte recruitment to infected tissue is a crucial event for the control of infections such as VL. Among inflammatory cells, neutrophils are recruited to the site of Leishmania infection, and these cells may control parasite replication through oxidative or non-oxidative mechanisms. The recruitment, activation and functions of the neutrophils are coordinated by pro-inflammatory cytokines and chemokines during recognition of the parasite by pattern recognition receptors (PRRs). Here, we demonstrated that the Toll-like receptor 2 (TLR2) signaling pathway contributes to the development of the innate immune response during L. infantum infection. The protective mechanism is related to the appropriate recruitment of neutrophils to the inflammatory site. Neutrophil migration is coordinated by DCs that produce CXCL1 and provide a prototypal Th1 and Th17 environment when activated via TLR2. Furthermore, infected TLR2-/- mice failed to induce nitric oxide synthase (iNOS) expression in neutrophils but not in macrophages. In vitro, infected TLR2-/- neutrophils presented deficient iNOS expression, nitric oxide (NO) and TNF-α production, decreased expression of CD11b and reduced L. infantum uptake capacity. The non-responsive state of neutrophils is associated with increased amounts of IL-10. Taken together, these data clarify new mechanisms by which TLR2 functions in promoting the development of the adaptive immune response and effector mechanisms of neutrophils during L. infantum infection.

15.
Mediators Inflamm ; 2016: 9626427, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27872515

RESUMO

The prostaglandin, 15-deoxy Δ12,14-prostaglandin J2 (15d-PGJ2), is a lipid mediator that plays an important role in the control of chronic inflammatory disease. However, the role of prostanoid in rheumatoid arthritis (RA) is not well determined. We demonstrated the therapeutic effect of 15d-PGJ2 in an experimental model of arthritis. Daily administration of 15d-PGJ2 attenuated the severity of CIA, reducing the clinical score, pain, and edema. 15d-PGJ2 treatment was associated with a marked reduction in joint levels of proinflammatory cytokines. Although the mRNA expression of ROR-γt was profoundly reduced, FOXP3 was enhanced in draining lymph node cells from 15d-PGJ2-treated arthritic mice. The specific and polyclonal CD4+ Th17 cell responses were limited during the addition of prostaglandin to cell culture. Moreover, in vitro 15d-PGJ2 increased the expression of FOXP3, GITR, and CTLA-4 in the CD4+CD25- population, suggesting the induction of Tregs on conventional T cells. Prostanoid addition to CD4+CD25- cells selectively suppressed Th17 differentiation and promoted the enhancement of FOXP3 under polarization conditions. Thus, 15d-PGJ2 ameliorated symptoms of collagen-induced arthritis by regulating Th17 differentiation, concomitant with the induction of Tregs, and, consequently, protected mice from diseases aggravation. Altogether, these results indicate that 15d-PGJ2 may represent a potential therapeutic strategy in RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Antígenos CD4/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Prostaglandina D2/análogos & derivados , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Animais , Artrite Experimental/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico
16.
J Infect Dis ; 214(11): 1647-1657, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27651416

RESUMO

Interferon γ (IFN-γ) and interleukin 17A (IL-17A)-producing cells are described to be related to the protection against Leishmania infantum infection. How the immune system coordinates the balance between T-helper type 1 (Th1) and 17 (Th17) responses during visceral leishmaniasis (VL) is still unknown. Here, we combined transcriptional profiling, using RNA sequencing analysis of human samples, with an experimental model to show that Th17-related genes are suppressed and that Th1 signature genes are induced during human VL. The high amount of Th1 cells in VL was dependent on the NOD2-RIP2 signaling in dendritic cells, which was crucial for interleukin 12 production through the phosphorylation of MAPK. On the other hand, this pathway inhibits Th17 cells by limiting interleukin 23 production. As a consequence, Nod2-/- and Rip2-/- mice showed defects in Th1 responses and higher parasite loads as compared to WT mice. Together, the data demonstrate that the NOD2-RIP2 pathway is activated in murine and human VL and plays a role in shaping adaptive immunity toward a Th1 profile.


Assuntos
Imunidade Adaptativa , Leishmaniose Visceral/imunologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Carga Parasitária , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Células Th1/imunologia , Células Th17/imunologia
17.
Infect Immun ; 84(8): 2289-2298, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27245409

RESUMO

The relationship established between Leishmania infantum and the vertebrate host can lead to a self-healing infection or to the manifestation of visceral leishmaniasis, a chronic systemic infection associated with high rates of mortality. We hypothesized that regulatory cytokines, such as interleukin-27 (IL-27), play a role in susceptibility to L. infantum infection. IL-27 is a heterodimeric cytokine composed of IL-27p28 and EBi3 subunits which, when combined, bind to IL-27R, leading to STAT-1 and -3 activation, playing a role in the regulation of the immune response. We observed in this work that IL-27 regulates the Th1/Th17 profiles in a mouse model of visceral leishmaniasis (VL) caused by L. infantum We showed here that the pathogen recognition by endosomal Toll-like receptors triggers a type I interferon (IFN) response, which acts through the type I IFN receptor and interferon regulatory factor 1 to induce IL-27 production by macrophages. Furthermore, IL-27 plays a major regulatory role in vivo, because Ebi3(-/-) mice can efficiently control parasite replication despite reduced levels of IFN-γ compared to wild-type mice. On the other hand, the absence of Ebi3 leads to exacerbated IL-17A production in the infected organs as well as in a coculture system, suggesting a direct regulatory action of IL-27 during L. infantum infection. As a consequence of exacerbated IL-17A in Ebi3(-/-) mice, a greater neutrophil influx was observed in the target organs, playing a role in parasite control. Thus, this work unveiled the molecular steps of IL-27 production after L. infantum infection and demonstrated its regulatory role in the IL-17A-neutrophil axis.


Assuntos
Suscetibilidade a Doenças , Interleucina-27/metabolismo , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Resistência à Doença/genética , Endossomos/metabolismo , Interferon Tipo I/metabolismo , Interleucina-17/metabolismo , Leishmania infantum/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais , Células Th17/imunologia , Células Th17/metabolismo , Receptores Toll-Like/metabolismo
18.
Mol Med Rep ; 13(5): 4252-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27035849

RESUMO

A novel T cell-secreted cytokine, termed secreted osteoclastogenic factor of activated T cells (SOFAT) that induces osteoclastic bone resorption in a RANKL-independent manner, has been described. Our group have previously reported that SOFAT is highly expressed in gingival tissues of patients with chronic periodontitis suggesting a putative role in the bone loss associated with periodontal disease. The aim of the present study was to identify other potential cellular sources of SOFAT in the bone resorptive lesions of patients with periodontal disease. Gingival tissues were biopsied from systemically healthy subjects without periodontal disease (n=5) and patients with chronic periodontitis (n=5), and the presence of SOFAT was analyzed by immunohistochemistry and immunofluorescence staining. The present data demonstrated marked SOFAT staining in diseased periodontal tissues that was predominantly associated with the lymphocytic infiltration of gingival tissues. Notably, in addition to CD3+ T cells, B­lineage cells including plasma cells also exhibited strong staining for SOFAT. As SOFAT has not previously been reported in B­lineage cells, splenic T cells and B cells were further purified from BALB/c mice and activated using CD3/CD28 and lipopolysaccharide, respectively. SOFAT was quantified by reverse transcription­quantitative polymerase chain reaction and was shown to be significantly expressed (P<0.05) in both activated T cells and B cells compared with unstimulated cells. These data support a putative role of SOFAT in the bone loss associated with chronic periodontal disease. In addition, to the best of our knowledge, this study demonstrates for the first time that in addition to T cells, B-lineage cells may also be a significant source of SOFAT in inflammatory states.


Assuntos
Perda do Osso Alveolar/metabolismo , Linfócitos B/metabolismo , Citocinas/biossíntese , Regulação da Expressão Gênica , Periodontite/metabolismo , Linfócitos T/metabolismo , Adulto , Perda do Osso Alveolar/patologia , Animais , Linfócitos B/patologia , Doença Crônica , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Periodontite/patologia , Linfócitos T/patologia
19.
J Leukoc Biol ; 100(2): 423-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26884611

RESUMO

In vertebrate hosts, Leishmania braziliensis parasites infect mainly mononuclear phagocytic system cells, which when activated by T helper cell type 1 cytokines produce nitric oxide and kill the pathogens. Chemokine (C-C motif) receptor 2 is a chemokine receptor that binds primarily chemokine (C-C motif) ligand 2 and has an important role in the recruitment of monocytic phagocytes. Although it has been reported that Leishmania braziliensis infection induces CCR2 expression in the lesions, the role of CCR2 during Leishmania braziliensis infection remains unknown. Here, we showed that CCR2 has a role in mediating protection against Leishmania braziliensis infection in mice. The absence of CCR2 resulted in increased susceptibility to infection and was associated with low amounts of Ly6C(+) inflammatory dendritic cells in the lesions, which we found to be the major sources of tumor necrosis factor production and induced nitric oxide synthase expression in C57BL/6 mice lesions. Consequently, CCR2(-/-) mice showed decreased tumor necrosis factor production and induced nitric oxide synthase expression, resulting in impaired parasite elimination. We also demonstrated that CCR2 has a role in directly mediating the differentiation of monocytes into inflammatory dendritic cells at the infection sites, contributing to the accumulation of inflammatory dendritic cells in Leishmania braziliensis lesions and subsequent control of parasite replication. Therefore, these data provide new information on the role of chemokines during the immune response to infections and identify a potential target for therapeutic interventions in cutaneous leishmaniasis.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Inflamação/imunologia , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/prevenção & controle , Receptores CCR2/fisiologia , Animais , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Células Dendríticas/parasitologia , Feminino , Inflamação/parasitologia , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/parasitologia , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais
20.
Infect Immun ; 83(12): 4604-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26371124

RESUMO

Leishmania infantum is a protozoan parasite that causes visceral leishmaniasis (VL). This infection triggers dendritic cell (DC) activation through the recognition of microbial products by Toll-like receptors (TLRs). Among the TLRs, TLR9 is required for DC activation by different Leishmania species. We demonstrated that TLR9 is upregulated in vitro and in vivo during infection. We show that C57BL/6 mice deficient in TLR9 expression (TLR9(-/-) mice) are more susceptible to infection and display higher parasite numbers in the spleen and liver. The increased susceptibility of TLR9(-/-) mice was due to the impaired recruitment of neutrophils to the infection foci associated with reduced levels of neutrophil chemoattractants released by DCs in the target organs. Moreover, both Th1 and Th17 cells were also committed in TLR9(-/-) mice. TLR9-dependent neutrophil recruitment is mediated via the MyD88 signaling pathway but is TIR domain-containing adapter-inducing interferon beta (TRIF) independent. Furthermore, L. infantum failed to activate both plasmacytoid and myeloid DCs from TLR9(-/-) mice, which presented reduced surface costimulatory molecule expression and chemokine release. Interestingly, neutrophil chemotaxis was affected both in vitro and in vivo when DCs were derived from TLR9(-/-) mice. Our results suggest that TLR9 plays a critical role in neutrophil recruitment during the protective response against L. infantum infection that could be associated with DC activation.


Assuntos
Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Receptor Toll-Like 9/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Células Dendríticas/patologia , Feminino , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Leishmania infantum/patogenicidade , Leishmaniose Visceral/genética , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/patologia , Fígado/imunologia , Fígado/parasitologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Neutrófilos/parasitologia , Neutrófilos/patologia , Transdução de Sinais , Baço/imunologia , Baço/parasitologia , Baço/patologia , Células Th1/imunologia , Células Th1/parasitologia , Células Th1/patologia , Células Th17/imunologia , Células Th17/parasitologia , Células Th17/patologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA