Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37852663

RESUMO

Candida auris is an emerging human pathogen, associated with antifungal drug resistance and hospital candidiasis outbreaks. In this work, we present iRV973, the first reconstructed Genome-scale metabolic model (GSMM) for C. auris. The model was manually curated and experimentally validated, being able to accurately predict the specific growth rate of C. auris and the utilization of several sole carbon and nitrogen sources. The model was compared to GSMMs available for other pathogenic Candida species and exploited as a platform for cross-species comparison, aiming the analysis of their metabolic features and the identification of potential new antifungal targets common to the most prevalent pathogenic Candida species. From a metabolic point of view, we were able to identify unique enzymes in C. auris in comparison with other Candida species, which may represent unique metabolic features. Additionally, 50 enzymes were identified as potential drug targets, given their essentiality in conditions mimicking human serum, common to all four different Candida models analysed. These enzymes represent interesting drug targets for antifungal therapy, including some known targets of antifungal agents used in clinical practice, but also new potential drug targets without any human homolog or drug association in Candida species.


Assuntos
Antifúngicos , Candidíase , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida auris , Candida/genética , Candidíase/microbiologia , Desenvolvimento de Medicamentos , Testes de Sensibilidade Microbiana
2.
Genes (Basel) ; 13(2)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35205348

RESUMO

Candida parapsilosis is an emerging human pathogen whose incidence is rising worldwide, while an increasing number of clinical isolates display resistance to first-line antifungals, demanding alternative therapeutics. Genome-Scale Metabolic Models (GSMMs) have emerged as a powerful in silico tool for understanding pathogenesis due to their systems view of metabolism, but also to their drug target predictive capacity. This study presents the construction of the first validated GSMM for C. parapsilosis-iDC1003-comprising 1003 genes, 1804 reactions, and 1278 metabolites across four compartments and an intercompartment. In silico growth parameters, as well as predicted utilisation of several metabolites as sole carbon or nitrogen sources, were experimentally validated. Finally, iDC1003 was exploited as a platform for predicting 147 essential enzymes in mimicked host conditions, in which 56 are also predicted to be essential in C. albicans and C. glabrata. These promising drug targets include, besides those already used as targets for clinical antifungals, several others that seem to be entirely new and worthy of further scrutiny. The obtained results strengthen the notion that GSMMs are promising platforms for drug target discovery and guide the design of novel antifungal therapies.


Assuntos
Antifúngicos , Candida parapsilosis , Antifúngicos/farmacologia , Candida albicans/genética , Candida parapsilosis/genética , Humanos , Incidência , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA