Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36098978

RESUMO

Liquid chromatography-high resolution mass spectrometry (LC-HRMS) is considered an unavoidable extension of low-resolution LC-MS/MS that stretches the capabilities of multi-residue analysis of chemical contaminants in food. However, LC-HRMS acquisitions generate a massive amount of information available for data processing with supplier software that still miss critical calculation features and adapted reporting tools. Consequently, routine laboratories are still reluctant to switch from LC-MS/MS to LC-HRMS, the latter is still perceived as a cumbersome and demanding technology. In that context, we propose a four-step LC-HRMS workflow to speed-up data processing in situations of multi-residue multi-matrix analysis with the goal to maximize the time spent on data interpretation rather than on data formatting. The first three steps of the workflow imply specific settings on the Orbitrap HRMS associated software (TraceFinderTM) while the fourth step is the novelty i.e. a newly coded R-script capable to translate a raw export file into a comprehensive .xlsx report file in a few seconds. As recommended by various international guidelines and in some official methods, standard addition-based applications are fully embedded in this reporting tool whilst still being the main bottleneck of supplier's software. The reporting tool also allows appropriate data formatting, filtering, and color-coding options to provide a clear picture of compounds being detected or not, and those requiring specific attention due to unmet quality control criteria as required by European legislation (European Commission SANTE 11312/2021). It is hoped that additional functionalities compatible with R scripts will be soon fully embedded in the supplier's software for easier data interpretation and reporting.


Assuntos
Software , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Controle de Qualidade , Laboratórios
2.
Sci Rep ; 11(1): 24046, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911996

RESUMO

Microplastics (MPs) have gained a high degree of public interest since they are associated with the global release of plastics into the environment. Various studies have confirmed the presence of MPs throughout the food chain. However, information on the ingestion of MPs via the consumption of many commonly consumed foods like dairy products are scarce due to the lack of studies investigating the "contamination" of this food group by MPs. This lack of occurrence data is mainly due to the absence of robust analytical methods capable of reliably quantifying MPs with size < 20 µm in foods. In this work, a new methodology was developed to accurately determine and characterize MPs in milk-based products using micro-Raman (µRaman) technology, entailing combined enzymatic and chemical digestion steps. This is the first time that the presence of relatively low amounts of small-sized MP (≥ 5 µm) have been reported in raw milk collected at farm just after the milking machine and in some processed commercial liquid and powdered cow's milk products.

3.
PLoS One ; 13(4): e0194834, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29652884

RESUMO

Neochloris oleoabundans is an oleaginous microalgal species that can be cultivated in fresh water as well as salt water. Using salt water gives the opportunity to reduce production costs and the fresh water footprint for large scale cultivation. Production of triacylglycerols (TAG) usually includes a biomass growth phase in nitrogen-replete conditions followed by a TAG accumulation phase under nitrogen-deplete conditions. This is the first report that provides insight in the saline resistance mechanism of a fresh water oleaginous microalgae. To better understand the osmoregulatory mechanism of N. oleoabundans during growth and TAG accumulating conditions, the transcriptome was sequenced under four different conditions: fresh water nitrogen-replete and -deplete conditions, and salt water (525 mM dissolved salts, 448mM extra NaCl) nitrogen-replete and -deplete conditions. In this study, several pathways are identified to be responsible for salt water adaptation of N. oleoabundans under both nitrogen-replete and -deplete conditions. Proline and the ascorbate-glutathione cycle seem to be of importance for successful osmoregulation in N. oleoabundans. Genes involved in Proline biosynthesis were found to be upregulated in salt water. This was supported by Nuclear magnetic resonance (NMR) spectroscopy, which indicated an increase in proline content in the salt water nitrogen-replete condition. Additionally, the lipid accumulation pathway was studied to gain insight in the gene regulation in the first 24 hours after nitrogen was depleted. Oil accumulation is increased under nitrogen-deplete conditions in a comparable way in both fresh and salt water. The mechanism behind the biosynthesis of compatible osmolytes can be used to improve N. oleoabundans and other industrially relevant microalgal strains to create a more robust and sustainable production platform for microalgae derived products in the future.


Assuntos
Clorófitas/genética , Clorófitas/metabolismo , Microalgas/genética , Microalgas/metabolismo , Nitrogênio/metabolismo , Sais/metabolismo , Estresse Fisiológico/genética , Transcriptoma , Biomassa , Vias Biossintéticas , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Espectroscopia de Ressonância Magnética , Anotação de Sequência Molecular , Estresse Oxidativo , Cloreto de Sódio/metabolismo , Amido/metabolismo , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA