Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533783

RESUMO

Exposure to repetitive head impacts (RHIs) in contact sports is associated with neurodegenerative disorders including chronic traumatic encephalopathy (CTE) which currently can be diagnosed only at postmortem. American football players are at higher risk of developing CTE given their exposure to RHIs. One promising approach for diagnosing CTE in vivo is to explore known neuropathological abnormalities at postmortem in living individuals using structural magnetic resonance imaging (MRI). MRI brain morphometry was evaluated in 170 male former American football players ages 45-74 years (n = 114 professional; n = 56 college) and 54 same-age unexposed asymptomatic male controls (n = 58 age range 45-74). Cortical thickness and volume of regions of interest were selected based on established CTE pathology findings and were assessed using FreeSurfer. Group differences and interactions with age and exposure factors were evaluated using a generalized least squares model. A separate logistic regression and independent multinomial model were performed to predict each Traumatic Encephalopathy Syndrome (TES) diagnosis core clinical features and provisional level of certainty for CTE pathology using brain regions of interest. Former college and professional American football players (combined) showed significant cortical thickness and/or volume reductions compared to unexposed asymptomatic controls in the hippocampus amygdala entorhinal cortex parahippocampal gyrus insula temporal pole and superior frontal gyrus. Post-hoc analyses identified group-level differences between former professional players and unexposed asymptomatic controls in the hippocampus amygdala entorhinal cortex parahippocampal gyrus insula and superior frontal gyrus. Former college players showed significant volume reductions in the hippocampus amygdala and superior frontal gyrus compared to the unexposed asymptomatic controls. We did not observe age-by-group interactions for brain morphometric measures. Interactions between morphometry and exposure measures were limited to a single significant positive association between the age of first exposure to organized tackle football and right insular volume. We found no significant relationship between brain morphometric measures and the TES diagnosis core clinical features and provisional level of certainty for CTE pathology outcomes. These findings suggest that MRI morphometrics detects abnormalities in individuals with a history of RHI exposure that resemble the anatomic distribution of pathological findings from postmortem CTE studies. The lack of findings associating MRI measures with exposure metrics (except for one significant relationship) or TES diagnosis and core clinical features suggests that brain morphometry must be complemented by other types of measures to characterize individuals with RHIs.

2.
J Clin Med ; 12(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37629457

RESUMO

The gray matter/white matter (GM/WM) boundary of the brain is vulnerable to shear strain associated with mild traumatic brain injury (mTBI). It is, however, unknown whether GM/WM microstructure is associated with long-term outcomes following mTBI. The diffusion and structural MRI data of 278 participants between 18 and 65 years of age with and without military background from the Department of Defense INTRuST study were analyzed. Fractional anisotropy (FA) was extracted at the GM/WM boundary across the brain and for each lobe. Additionally, two conventional analytic approaches were used: whole-brain deep WM FA (TBSS) and whole-brain cortical thickness (FreeSurfer). ANCOVAs were applied to assess differences between the mTBI cohort (n = 147) and the comparison cohort (n = 131). Associations between imaging features and post-concussive symptom severity, and functional and cognitive impairment were investigated using partial correlations while controlling for mental health comorbidities that are particularly common among military cohorts and were present in both the mTBI and comparison group. Findings revealed significantly lower whole-brain and lobe-specific GM/WM boundary FA (p < 0.011), and deep WM FA (p = 0.001) in the mTBI cohort. Whole-brain and lobe-specific GM/WM boundary FA was significantly negatively correlated with post-concussive symptoms (p < 0.039), functional (p < 0.016), and cognitive impairment (p < 0.049). Deep WM FA was associated with functional impairment (p = 0.002). Finally, no significant difference was observed in cortical thickness, nor between cortical thickness and outcome (p > 0.05). Findings from this study suggest that microstructural alterations at the GM/WM boundary may be sensitive markers of adverse long-term outcomes following mTBI.

3.
Front Neuroanat ; 16: 894606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249866

RESUMO

Magnetic resonance imaging (MRI)-based brain segmentation has recently been revolutionized by deep learning methods. These methods use large numbers of annotated segmentations to train algorithms that have the potential to perform brain segmentations reliably and quickly. However, training data for these algorithms are frequently obtained from automated brain segmentation systems, which may contain inaccurate neuroanatomy. Thus, the neuroimaging community would benefit from an open source database of high quality, neuroanatomically curated and manually edited MRI brain images, as well as the publicly available tools and detailed procedures for generating these curated data. Manual segmentation approaches are regarded as the gold standard for brain segmentation and parcellation. These approaches underpin the construction of neuroanatomically accurate human brain atlases. In addition, neuroanatomically precise definitions of MRI-based regions of interest (ROIs) derived from manual brain segmentation are essential for accuracy in structural connectivity studies and in surgical planning for procedures such as deep brain stimulation. However, manual segmentation procedures are time and labor intensive, and not practical in studies utilizing very large datasets, large cohorts, or multimodal imaging. Automated segmentation methods were developed to overcome these issues, and provide high data throughput, increased reliability, and multimodal imaging capability. These methods utilize manually labeled brain atlases to automatically parcellate the brain into different ROIs, but do not have the anatomical accuracy of skilled manual segmentation approaches. In the present study, we developed a custom software module for manual editing of brain structures in the freely available 3D Slicer software platform that employs principles and tools based on pioneering work from the Center for Morphometric Analysis (CMA) at Massachusetts General Hospital. We used these novel 3D Slicer segmentation tools and techniques in conjunction with well-established neuroanatomical definitions of subcortical brain structures to manually segment 50 high resolution T1w MRI brains from the Human Connectome Project (HCP) Young Adult database. The structural definitions used herein are associated with specific neuroanatomical ontologies to systematically interrelate histological and MRI-based morphometric definitions. The resulting brain datasets are publicly available and will provide the basis for a larger database of anatomically curated brains as an open science resource.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA