RESUMO
Systems for disease vector control should be effective, efficient, and flexible to be able to tackle contemporary challenges and threats in the control and elimination of vector-borne diseases. As a priority activity towards the strengthening of vector control systems, it has been advocated that countries conduct a vector-control needs assessment. A review was carried out of the perceived needs for disease vector control programs among eleven countries and subnational states in South Asia and the Middle East. In each country or state, independent teams conducted vector control needs assessment with engagement of stakeholders. Important weaknesses were described for malaria, dengue and leishmaniases regarding vector surveillance, insecticide susceptibility testing, monitoring and evaluation of operations, entomological capacity and laboratory infrastructure. In addition, community mobilization and intersectoral collaboration showed important gaps. Countries and states expressed concern about insecticide resistance that could reduce the continued effectiveness of interventions, which demands improved monitoring. Moreover, attainment of disease elimination necessitates enhanced vector surveillance. Vector control needs assessment provided a useful planning tool for systematic strengthening of vector control systems. A limitation in conducting the vector control needs assessment was that it is time- and resource-intensive. To increase the feasibility and utility of national assessments, an abridged version of the guidance should focus on operationally relevant topics of the assessment. Similar reviews are needed in other regions with different contextual conditions.
Assuntos
Doenças Transmitidas por Vetores , Animais , Humanos , Ásia Meridional/epidemiologia , Dengue/prevenção & controle , Dengue/epidemiologia , Dengue/transmissão , Vetores de Doenças , Inseticidas , Malária/prevenção & controle , Malária/epidemiologia , Oriente Médio/epidemiologia , Avaliação das Necessidades , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/transmissãoRESUMO
Dengue virus (DENV) transmission from humans to mosquitoes is a poorly documented, but critical component of DENV epidemiology. Magnitude of viremia is the primary determinant of successful human-to-mosquito DENV transmission. People with the same level of viremia, however, can vary in their infectiousness to mosquitoes as a function of other factors that remain to be elucidated. Here, we report on a field-based study in the city of Iquitos, Peru, where we conducted direct mosquito feedings on people naturally infected with DENV and that experienced mild illness. We also enrolled people naturally infected with Zika virus (ZIKV) after the introduction of ZIKV in Iquitos during the study period. Of the 54 study participants involved in direct mosquito feedings, 43 were infected with DENV-2, two with DENV-3, and nine with ZIKV. Our analysis excluded participants whose viremia was detectable at enrollment but undetectable at the time of mosquito feeding, which was the case for all participants with DENV-3 and ZIKV infections. We analyzed the probability of onward transmission during 50 feeding events involving 27 participants infected with DENV-2 based on the presence of infectious virus in mosquito saliva 7-16 days post blood meal. Transmission probability was positively associated with the level of viremia and duration of extrinsic incubation in the mosquito. In addition, transmission probability was influenced by the day of illness in a non-monotonic fashion; i.e., transmission probability increased until 2 days after symptom onset and decreased thereafter. We conclude that mildly ill DENV-infected humans with similar levels of viremia during the first two days after symptom onset will be most infectious to mosquitoes on the second day of their illness. Quantifying variation within and between people in their contribution to DENV transmission is essential to better understand the biological determinants of human infectiousness, parametrize epidemiological models, and improve disease surveillance and prevention strategies.
Assuntos
Culicidae , Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Viremia , Infecção por Zika virus/epidemiologia , Dengue/epidemiologiaRESUMO
BACKGROUND: Dengue viruses (DENV) can be transmitted from an adult female Aedes aegypti mosquito through the germ line to the progeny; however, there is uncertainty if this occurs at a frequency that is epidemiologically significant. We measured vertical transmission of DENV from field-reared Ae. aegypti to their F1 progeny after feeding upon blood from dengue patients. We also examined the transmission potential of F1 females. METHODS: We examined the frequency of vertical transmission in field-reared mosquitoes, who fed upon blood from acutely viremic dengue patients, and the capacity for vertically infected females to subsequently transmit virus horizontally, in two sets of experiments: (i) compared vertical transmission frequency of field-reared Ae. aegypti and Ae. albopictus, in individual progeny; and (ii) in pooled progeny derived from field- and laboratory-reared Ae. aegypti. RESULTS: Of 41 DENV-infected and isofemaled females who laid eggs, only a single female (2.43%) transmitted virus to one of the F1 progeny, but this F1 female did not have detectable virus in the saliva when 14 days-old. We complemented this initial study by testing for vertical transmission in another 460 field-reared females and > 900 laboratory-reared counterparts but failed to provide any further evidence of vertical virus transmission. CONCLUSIONS: In summary, these results using field-reared mosquitoes and viremic blood from dengue cases suggest that vertical transmission is uncommon. Field-based studies that build on these observations are needed to better define the contribution of vertical DENV transmission to dengue epidemiology.
Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/transmissão , Óvulo/virologia , Adolescente , Adulto , Aedes/fisiologia , Animais , Sangue/virologia , Dengue/sangue , Dengue/virologia , Vírus da Dengue/genética , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Masculino , Linhagem , Saliva/virologia , Vietnã , Adulto JovemRESUMO
This study describes the natural history of dengue virus (DENV) infection in rhesus monkeys exposed to the bites of DENV-infected Aedes aegypti mosquitoes. Dengue virus-infected mosquitoes were generated by either intrathoracic inoculation or by oral feeding on viremic blood meals. Each of the six rhesus monkeys that were fed upon by intrathoracically infected mosquitoes developed non-structural protein 1 (NS1) antigenemia and an IgM response; viremia was detected in 4/6 individuals. No virological or immunological evidence of DENV infection was detected in the three monkeys exposed to mosquitoes that had been orally infected with DENV. These results demonstrate the utility of mosquito-borne challenge of rhesus monkeys with DENV.
Assuntos
Aedes/virologia , Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Dengue/imunologia , Imunoglobulina M/sangue , Mosquitos Vetores/virologia , Viremia/imunologia , Animais , Dengue/sangue , Dengue/diagnóstico , Dengue/transmissão , Vírus da Dengue/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Macaca mulatta , Projetos Piloto , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas não Estruturais Virais/genética , Viremia/sangue , Viremia/diagnóstico , Viremia/transmissãoRESUMO
The insect bacterium Wolbachia pipientis is being introgressed into Aedes aegypti populations as an intervention against the transmission of medically important arboviruses. Here we compare Ae. aegypti mosquitoes infected with wMelCS or wAlbB to the widely used wMel Wolbachia strain on an Australian nuclear genetic background for their susceptibility to infection by dengue virus (DENV) genotypes spanning all four serotypes. All Wolbachia-infected mosquitoes were more resistant to intrathoracic DENV challenge than their wildtype counterparts. Blocking of DENV replication was greatest by wMelCS. Conversely, wAlbB-infected mosquitoes were more susceptible to whole body infection than wMel and wMelCS. We extended these findings via mosquito oral feeding experiments, using viremic blood from 36 acute, hospitalised dengue cases in Vietnam, additionally including wMel and wildtype mosquitoes on a Vietnamese nuclear genetic background. As above, wAlbB was less effective at blocking DENV replication in the abdomen compared to wMel and wMelCS. The transmission potential of all Wolbachia-infected mosquito lines (measured by the presence/absence of infectious DENV in mosquito saliva) after 14 days, was significantly reduced compared to their wildtype counterparts, and lowest for wMelCS and wAlbB. These data support the use of wAlbB and wMelCS strains for introgression field trials and the biocontrol of DENV transmission. Furthermore, despite observing significant differences in transmission potential between wildtype mosquitoes from Australia and Vietnam, no difference was observed between wMel-infected mosquitoes from each background suggesting that Wolbachia may override any underlying variation in DENV transmission potential.
Assuntos
Aedes/microbiologia , Aedes/virologia , Vírus da Dengue/fisiologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Wolbachia/fisiologia , Aedes/genética , Aedes/metabolismo , Animais , Feminino , Masculino , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Controle Biológico de Vetores , Replicação ViralRESUMO
BACKGROUND: Dengue is the most prevalent arboviral disease of humans. Virus neutralizing antibodies are likely to be critical for clinical immunity after vaccination or natural infection. A number of human monoclonal antibodies (mAbs) have previously been characterized as able to neutralize the infectivity of dengue virus (DENV) for mammalian cells in cell-culture systems. METHODOLOGY/PRINCIPLE FINDINGS: We tested the capacity of 12 human mAbs, each of which had previously been shown to neutralize DENV in cell-culture systems, to abrogate the infectiousness of dengue patient viremic blood for mosquitoes. Seven of the twelve mAbs (1F4, 14c10, 2D22, 1L12, 5J7, 747(4)B7, 753(3)C10), almost all of which target quaternary epitopes, inhibited DENV infection of Ae. aegypti. The mAbs 14c10, 747(4)B7 and 753(3)C10 could all inhibit transmission of DENV in low microgram per mL concentrations. An Fc-disabled variant of 14c10 was as potent as its parent mAb. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that mAbs can neutralize infectious DENV derived from infected human cells, in the matrix of human blood. Coupled with previous evidence of their ability to prevent DENV infection of mammalian cells, such mAbs could be considered attractive antibody classes to elicit with dengue vaccines, or alternatively, for consideration as therapeutic candidates.
Assuntos
Aedes/virologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/prevenção & controle , Viremia/imunologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Antivirais/sangue , Dengue/transmissão , Dengue/virologia , Vacinas contra Dengue , Epitopos/imunologia , Humanos , Viremia/virologiaRESUMO
BACKGROUND: Wolbachia-infected mosquitoes reduce dengue virus transmission, and city-wide releases in Yogyakarta city, Indonesia, are showing promising entomological results. Accurate estimates of the burden of dengue, its spatial distribution and the potential impact of Wolbachia are critical in guiding funder and government decisions on its future wider use. METHODS: Here, we combine multiple modelling methods for burden estimation to predict national case burden disaggregated by severity and map the distribution of burden across the country using three separate data sources. An ensemble of transmission models then predicts the estimated reduction in dengue transmission following a nationwide roll-out of wMel Wolbachia. RESULTS: We estimate that 7.8 million (95% uncertainty interval [UI] 1.8-17.7 million) symptomatic dengue cases occurred in Indonesia in 2015 and were associated with 332,865 (UI 94,175-754,203) lost disability-adjusted life years (DALYs). The majority of dengue's burden was due to non-severe cases that did not seek treatment or were challenging to diagnose in outpatient settings leading to substantial underreporting. Estimated burden was highly concentrated in a small number of large cities with 90% of dengue cases occurring in 15.3% of land area. Implementing a nationwide Wolbachia population replacement programme was estimated to avert 86.2% (UI 36.2-99.9%) of cases over a long-term average. CONCLUSIONS: These results suggest interventions targeted to the highest burden cities can have a disproportionate impact on dengue burden. Area-wide interventions, such as Wolbachia, that are deployed based on the area covered could protect people more efficiently than individual-based interventions, such as vaccines, in such dense environments.
Assuntos
Aedes/microbiologia , Dengue/prevenção & controle , Modelos Teóricos , Controle Biológico de Vetores/métodos , Wolbachia , Animais , Efeitos Psicossociais da Doença , Dengue/epidemiologia , Dengue/transmissão , Vírus da Dengue , Humanos , Indonésia/epidemiologiaRESUMO
The wMel strain of Wolbachia can reduce the permissiveness of Aedes aegypti mosquitoes to disseminated arboviral infections. Here, we report that wMel-infected Ae. aegypti (Ho Chi Minh City background), when directly blood-fed on 141 viremic dengue patients, have lower dengue virus (DENV) transmission potential and have a longer extrinsic incubation period than their wild-type counterparts. The wMel-infected mosquitoes that are field-reared have even greater relative resistance to DENV infection when fed on patient-derived viremic blood meals. This is explained by an increased susceptibility of field-reared wild-type mosquitoes to infection than laboratory-reared counterparts. Collectively, these field- and clinically relevant findings support the continued careful field-testing of wMel introgression for the biocontrol of Ae. aegypti-born arboviruses.
Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/virologia , Mosquitos Vetores/virologia , Wolbachia/fisiologia , Aedes/microbiologia , Animais , Dengue/sangue , Dengue/transmissão , Humanos , Modelos Logísticos , Mosquitos Vetores/microbiologia , Controle Biológico de Vetores/métodos , Fatores de Tempo , Viremia/sangue , Viremia/virologiaRESUMO
BACKGROUND: Primary health care facilities frequently manage dengue cases on an ambulatory basis for the duration of the patient's illness. There is a great opportunity for specific messaging, aimed to reduce dengue virus (DENV) transmission in and around the home, to be directly targeted toward this high-risk ambulatory patient group, as part of an integrated approach to dengue management. The extent however, to which physicians understand, and can themselves effectively communicate strategies to stop focal DENV transmission around an ambulatory dengue case is unknown; the matter of patient comprehension and recollection then ensues. In addition, the effectiveness of N,N-diethyl-3-methylbenzamide (DEET)-based insect repellent in protecting dengue patients from Aedes aegypti mosquitoes' bites has not been investigated. METHODOLOGY: A knowledge, attitude and practice (KAP) survey, focusing on the mechanisms of DENV transmission and prevention, was performed using semi-structured questionnaires. This survey was targeted towards the patients and family members providing supportive care, and physicians routinely involved in dengue patient management in Southern Vietnam. An additional clinical observational study was conducted to measure the efficacy of a widely-used 13% DEET-based insect repellent to repel Ae. aegypti mosquitoes from the forearms of dengue cases and matched healthy controls. PRINCIPAL FINDINGS: Among both the physician (n = 50) and patient (n = 49) groups there were several respondents lacking a coherent understanding of DENV transmission, leading to some inappropriate attitudes and inadequate acute preventive practices in the household. The application of insect repellent to protect patients and their relatives from mosquito bites was frequently recommended by majority of physicians (78%) participating in the survey. Nevertheless, our tested topical application of 13% DEET conferred only ~1hr median protection time from Ae. aegypti landing. This is notably shorter than that advertised on the manufacturer's label. No differences in landing time between febrile dengue cases or matched healthy controls (n = 19 experiments) were observed. CONCLUSION/SIGNIFICANCE: Our study identifies missed opportunities for primary care physicians to improve public health through communication of strategies that could prevent focal dengue transmission in and around a case household. We advocate better access to more efficient communication methods for physicians and auxilliary health workers, supporting to educate those at high risk of DENV transmission. Our empirical testing of a widely-available 13% DEET-based repellent was limited in its protective efficacy against Ae. aegypti mosquito bites, and therefore DENV transmission, suggesting more frequent application is necessary to be beneficial.
Assuntos
Cuidadores , Dengue/prevenção & controle , Conhecimentos, Atitudes e Prática em Saúde , Repelentes de Insetos/administração & dosagem , Controle de Mosquitos , Médicos , Adulto , Aedes , Animais , Dengue/transmissão , Características da Família , Feminino , Humanos , Masculino , Relações Médico-PacienteRESUMO
Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40-75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV), is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significantly reduce the vector competence of this mosquito for a range of human pathogens in the laboratory. This has led to wMel-transinfected Ae. aegypti currently being released in five countries to evaluate its effectiveness to control dengue disease in human populations. Here we describe the generation of a superinfected Ae. aegypti mosquito line simultaneously infected with two avirulent Wolbachia strains, wMel and wAlbB. The line carries a high overall Wolbachia density and tissue localisation of the individual strains is very similar to each respective single infected parental line. The superinfected line induces unidirectional cytoplasmic incompatibility (CI) when crossed to each single infected parental line, suggesting that the superinfection would have the capacity to replace either of the single constituent infections already present in a mosquito population. No significant differences in fitness parameters were observed between the superinfected line and the parental lines under the experimental conditions tested. Finally, the superinfected line blocks DENV replication more efficiently than the single wMel strain when challenged with blood meals from viremic dengue patients. These results suggest that the deployment of superinfections could be used to replace single infections and may represent an effective strategy to help manage potential resistance by DENV to field deployments of single infected strains.
Assuntos
Aedes/microbiologia , Insetos Vetores/imunologia , Controle Biológico de Vetores , Infecções por Rickettsiaceae/microbiologia , Superinfecção/microbiologia , Wolbachia , Animais , Dengue/virologia , Vírus da Dengue , Feminino , Humanos , Controle Biológico de Vetores/métodos , Saliva/microbiologia , Replicação ViralRESUMO
Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52-.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present.
Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/transmissão , Insetos Vetores/virologia , Adulto , Animais , Dengue/virologia , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Saúde Pública , Vietnã , Viremia/virologia , Adulto JovemRESUMO
Transmission of dengue virus (DENV) from mosquito to human is dependent upon the survival of the mosquito beyond the virus extrinsic incubation period. Previous studies report conflicting results of the effects of DENV on Aedes aegypti survival. Here, we describe the effect of DENV on the short-term survival (up to 12 d) of 4,321 Ae. aegypti mosquitoes blood-fed on 150 NS1-positive dengue patients hospitalized in the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam. Mosquito survival was not different between cohorts that fed upon blood from which 0% of mosquitoes became DENV infected (N = 88 feeds), or 100% became infected (N = 116 feeds). Subgroup analysis also did not reveal serotype-dependent differences in survival, nor a relationship between survival and human plasma viremia levels. These results suggest that DENV infection adds minimal cost to Ae. aegypti, an important finding when parameterizing the vector competence of this mosquito.
Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Aedes/fisiologia , Animais , Dengue/epidemiologia , Dengue/transmissão , Interações Hospedeiro-Parasita , Humanos , Insetos Vetores/virologia , Longevidade , Vietnã/epidemiologiaRESUMO
The successful transmission of dengue virus from a human host to a mosquito vector requires a complex set of factors to align. It is becoming increasingly important to improve our understanding of the parameters that shape the human to mosquito component of the transmission cycle so that vaccines and therapeutic antivirals can be fully evaluated and epidemiological models refined. Here we describe these factors, and discuss the biological and environmental impacts and demographic changes that are influencing these dynamics. Specifically, we examine features of the human infection required for the mosquito to acquire the virus via natural blood feeding, as well as the biological and environmental factors that influence a mosquito's susceptibility to infection, up to the point that they are capable of transmitting the virus to a new host.
RESUMO
BACKGROUND: Environmental factors such as temperature can alter mosquito vector competence for arboviruses. Results from recent studies indicate that daily fluctuations around an intermediate mean temperature (26°C) reduce vector competence of Aedes aeygpti for dengue viruses (DENV). Theoretical predictions suggest that the mean temperature in combination with the magnitude of the diurnal temperature range (DTR) mediate the direction of these effects. METHODOLOGY/PRINCIPAL FINDINGS: We tested the effect of temperature fluctuations on Ae. aegypti vector competence for DENV serotype-1 at high and low mean temperatures, and confirmed this theoretical prediction. A small DTR had no effect on vector competence around a high (30°C) mean, but a large DTR at low temperature (20°C) increased the proportion of infected mosquitoes with a disseminated infection by 60% at 21 and 28 days post-exposure compared to a constant 20°C. This effect resulted from a marked shortening of DENV extrinsic incubation period (EIP) in its mosquito vector; i.e., a decrease from 29.6 to 18.9 days under the fluctuating vs. constant temperature treatment. CONCLUSIONS: Our results indicate that Ae. aegypti exposed to large fluctuations at low temperatures have a significantly shorter virus EIP than under constant temperature conditions at the same mean, leading to a considerably greater potential for DENV transmission. These results emphasize the value of accounting for daily temperature variation in an effort to more accurately understand and predict the risk of mosquito-borne pathogen transmission, provide a mechanism for sustained DENV transmission in endemic areas during cooler times of the year, and indicate that DENV transmission could be more efficient in temperate regions than previously anticipated.
Assuntos
Aedes/fisiologia , Aedes/virologia , Vírus da Dengue/fisiologia , Animais , Temperatura BaixaRESUMO
BACKGROUND: The effect of temperature on insect biology is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. A fluctuating temperature profile around a mean of 26°C can alter Aedes aegypti vector competence for dengue viruses as well as numerous life-history traits, however, the effect of fluctuations on mosquitoes at critical thermal limits is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effects of large and small daily temperature fluctuations at low (16°C) and high (35-37°C) mean temperatures, after we identified these temperatures as being thresholds for immature development and/or adult reproduction under constant temperature conditions. We found that temperature effects on larval development time, larval survival and adult reproduction depend on the combination of mean temperature and magnitude of fluctuations. Importantly, observed degree-day estimates for mosquito development under fluctuating temperature profiles depart significantly (around 10-20%) from that predicted by constant temperatures of the same mean. At low mean temperatures, fluctuations reduce the thermal energy required to reach pupation relative to constant temperature, whereas at high mean temperatures additional thermal energy is required to complete development. A stage-structured model based on these empirical data predicts that fluctuations can significantly affect the intrinsic growth rate of mosquito populations. CONCLUSIONS/SIGNIFICANCE: Our results indicate that by using constant temperatures, one could under- or over-estimate values for numerous life-history traits compared to more natural field conditions dependent upon the mean temperature. This complexity may in turn reduce the accuracy of population dynamics modeling and downstream applications for mosquito surveillance and disease prevention.
Assuntos
Aedes/fisiologia , Insetos Vetores/fisiologia , Modelos Biológicos , Aedes/virologia , Animais , Vírus da Dengue/fisiologia , Temperatura Alta , Insetos Vetores/virologia , Larva/fisiologia , Larva/virologia , Reprodução/fisiologiaRESUMO
Diurnal temperature fluctuations can fundamentally alter mosquito biology and mosquito-virus interactions in ways that impact pathogen transmission. We investigated the effect of two daily fluctuating temperature profiles on Aedes aegypti vector competence for dengue virus (DENV) serotype-1. A large diurnal temperature range of 18.6°C around a 26°C mean, corresponding with the low DENV transmission season in northwestern Thailand, reduced midgut infection rates and tended to extend the virus extrinsic incubation period. Dissemination was first observed at day 7 under small fluctuations (7.6°C; corresponding with high DENV transmission) and constant control temperature, but not until Day 11 for the large diurnal temperature range. Results indicate that female Ae. aegypti in northwest Thailand are less likely to transmit DENV during the low than high transmission season because of reduced DENV susceptibility and extended virus extrinsic incubation period. Better understanding of DENV transmission dynamics will come with improved knowledge of temperature effects on mosquito-virus interactions.
Assuntos
Aedes/virologia , Vírus da Dengue/patogenicidade , Dengue/virologia , Insetos Vetores/virologia , Temperatura , Aedes/anatomia & histologia , Animais , Tamanho Corporal , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Interações Hospedeiro-Patógeno , Estações do Ano , Tailândia , Asas de Animais/anatomia & histologiaRESUMO
Seasonal variation in dengue virus transmission in northwestern Thailand is inversely related to the magnitude of diurnal temperature fluctuations, although mean temperature does not vary significantly across seasons. We tested the hypothesis that diurnal temperature fluctuations negatively influence epidemiologically important life-history traits of the primary dengue vector, Aedes aegypti (L.), compared with a constant 26 degrees C temperature. A large diurnal temperature range (DTR) (approximately equals 18 degrees C daily swing) extended immature development time (>1 d), lowered larval survival (approximately equals 6%), and reduced adult female reproductive output by 25% 14 d after blood feeding, relative to the constant 26 degreesC temperature. A small DTR (approximately equal 8 degrees C daily swing) led to a negligible or slightly positive effect on the life history traits tested. Our results indicate that there is a negative impact of large DTR on mosquito biology and are consistent with the hypothesis that, in at least some locations, large temperature fluctuations contribute to seasonal reduction in dengue virus transmission.
Assuntos
Aedes/crescimento & desenvolvimento , Temperatura , Animais , Dengue/transmissão , Feminino , Fertilidade , Insetos Vetores , Masculino , PeriodicidadeRESUMO
BACKGROUND: In California Drosophila simulans, the maternally inherited Riverside strain Wolbachia infection (wRi) provides a paradigm for rapid spread of Wolbachia in nature and rapid evolutionary change. wRi induces cytoplasmic incompatibility (CI), where crosses between infected males and uninfected females produce reduced egg-hatch. The three parameters governing wRi infection-frequency dynamics quantify: the fidelity of maternal transmission, the level of cytoplasmic incompatibility, and the relative fecundity of infected females. We last estimated these parameters in nature in 1993. Here we provide new estimates, under both field and laboratory conditions. Five years ago, we found that wRi had apparently evolved over 15 years to enhance the fecundity of infected females; here we examine whether CI intensity has also evolved. METHODOLOGY/PRINCIPAL FINDINGS: New estimates using wild-caught flies indicate that the three key parameters have remained relatively stable since the early 1990s. As predicted by our three-parameter model using field-estimated parameter values, population infection frequencies remain about 93%. Despite this relative stability, laboratory data based on reciprocal crosses and introgression suggest that wRi may have evolved to produce less intense CI (i.e., higher egg hatch from incompatible crosses). In contrast, we find no evidence that D. simulans has evolved to lower the susceptibility of uninfected females to CI. CONCLUSIONS/SIGNIFICANCE: Evolution of wRi that reduces CI is consistent with counterintuitive theoretical predictions that within-population selection on CI-causing Wolbachia does not act to increase CI. Within taxa, CI is likely to evolve mainly via pleiotropic effects associated with the primary targets of selection on Wolbachia, i.e., host fecundity and transmission fidelity. Despite continuous, strong selection, D. simulans has not evolved appreciably to suppress CI. Our data demonstrate a lack of standing genetic variation for CI resistance in the host.