Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Open Forum Infect Dis ; 10(3): ofad091, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36949879

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests have had limited recommended clinical application during the coronavirus disease 2019 (COVID-19) pandemic. To inform clinical practice, an understanding is needed of current perspectives of United States-based infectious disease (ID) physicians on the use, interpretation, and need for SARS-CoV-2 antibody tests. Methods: In March 2022, members of the Emerging Infections Network (EIN), a national network of practicing ID physicians, were surveyed on types of SARS-CoV-2 antibody assays ordered, interpretation of test results, and clinical scenarios for which antibody tests were considered. Results: Of 1867 active EIN members, 747 (40%) responded. Among the 583 who managed or consulted on COVID-19 patients, a majority (434/583 [75%]) had ordered SARS-CoV-2 antibody tests and were comfortable interpreting positive (452/578 [78%]) and negative (405/562 [72%]) results. Antibody tests were used for diagnosing post-COVID-19 conditions (61%), identifying prior SARS-CoV-2 infection (60%), and differentiating prior infection and response to COVID-19 vaccination (37%). Less than a third of respondents had used antibody tests to assess need for additional vaccines or risk stratification. Lack of sufficient evidence for use and nonstandardized assays were among the most common barriers for ordering tests. Respondents indicated that statements from professional societies and government agencies would influence their decision to order SARS-CoV-2 antibody tests for clinical decision making. Conclusions: Practicing ID physicians are using SARS-CoV-2 antibody tests, and there is an unmet need for clarifying the appropriate use of these tests in clinical practice. Professional societies and US government agencies can support clinicians in the community through the creation of appropriate guidance.

2.
PLoS One ; 16(12): e0260487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34910739

RESUMO

At the start of the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) designed, manufactured, and distributed the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel for SARS-CoV-2 detection. The diagnostic panel targeted three viral nucleocapsid gene loci (N1, N2, and N3 primers and probes) to maximize sensitivity and to provide redundancy for virus detection if mutations occurred. After the first distribution of the diagnostic panel, state public health laboratories reported fluorescent signal in the absence of viral template (false-positive reactivity) for the N3 component and to a lesser extent for N1. This report describes the findings of an internal investigation conducted by the CDC to identify the cause(s) of the N1 and N3 false-positive reactivity. For N1, results demonstrate that contamination with a synthetic template, that occurred while the "bulk" manufactured materials were located in a research lab for quality assessment, was the cause of false reactivity in the first lot. Base pairing between the 3' end of the N3 probe and the 3' end of the N3 reverse primer led to amplification of duplex and larger molecules resulting in false reactivity in the N3 assay component. We conclude that flaws in both assay design and handling of the "bulk" material, caused the problems with the first lot of the 2019-nCoV Real-Time RT-PCR Diagnostic Panel. In addition, within this study, we found that the age of the examined diagnostic panel reagents increases the frequency of false positive results for N3. We discuss these findings in the context of improvements to quality control, quality assurance, and assay validation practices that have since been improved at the CDC.


Assuntos
COVID-19 , Primers do DNA , Reações Falso-Positivas , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2
3.
PLoS Pathog ; 17(9): e1009633, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34547055

RESUMO

Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.


Assuntos
Modelos Animais de Doenças , Varíola , Animais , Humanos , Camundongos , Vírus da Varíola
4.
Front Immunol ; 12: 698737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249004

RESUMO

Efficacious vaccines are needed to control genital chlamydial diseases in humans and the veterinary industry. We previously reported a C. abortus (Cab) vaccine comprising recombinant Vibrio cholerae ghosts (rVCG) expressing the conserved and immunogenic N-terminal region of the Cab polymorphic membrane protein D (rVCG-Pmp18.1) protein that protected mice against intravaginal challenge. In this study, we investigated the immunomodulatory effect of the hematopoietic progenitor activator cytokine, Fms-like tyrosine kinase 3-ligand (FL) when co-administered with the rVCG-Pmp18.1 vaccine as a strategy to enhance the protective efficacy and the potential mechanism of immunomodulation. Groups of female C57BL/6J mice were immunized and boosted twice intranasally (IN) with rVCG-PmpD18.1 with and without FL or purified rPmp18.1 or rVCG-gD2 (antigen control) or PBS (medium) per mouse. The results revealed that co-administration of the vaccine with FL enhanced antigen-specific cellular and humoral immune responses and protected against live Cab genital infection. Comparative analysis of immune cell phenotypes infiltrating mucosal and systemic immune inductive tissue sites following immunization revealed that co-administration of rVCG-Pmp18.1 with FL significantly enhanced the number of macrophages, dendritic and NK cells, γδ and NK T cells in the spleen (systemic) and iliac lymph nodes (ILN) draining the genital tract (mucosal) tissues compared to rVCG-Pmp18.1 alone. Furthermore, FL enhanced monocyte infiltration in the ILN, while CD19+ B cells and CD4+ T cells were enhanced in the spleen. These results indicate that the immunomodulatory effect of FL is associated with its ability to mobilize innate immune cells and subsequent activation of robust antigen-specific immune effectors in mucosal and systemic lymphoid tissues.


Assuntos
Adjuvantes de Vacinas/farmacocinética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/farmacologia , Infecções por Chlamydia , Proteínas de Membrana/imunologia , Animais , Chlamydia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Vibrio cholerae
5.
Pathogens ; 10(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067003

RESUMO

Genital Chlamydia trachomatis infection causes severe reproductive pathologies such as salpingitis and pelvic inflammatory disease that can lead to tubal factor infertility. MicroRNAs (miRNAs) are evolutionarily conserved regulators of mammalian gene expression in development, immunity and pathophysiologic processes during inflammation and infection, including Chlamydia infection. Among the miRNAs involved in regulating host responses and pathologic outcome of Chlamydia infection, we have shown that miR-378b was significantly differentially expressed during primary infection and reinfection. In this study, we tested the hypothesis that miR-378b is involved in the pathological outcome of Chlamydia infection. We developed miR-378b knockout mice (miR-378b-/-) using Crispr/Cas and infected them along with their wild-type (WT) control with Chlamydia to compare the infectivity and reproductive pathologies. The results showed that miR-378b-/- mice were unable to clear the infection compared to WT mice; also, miR-378b-/- mice exhibited a relatively higher Chlamydia burden throughout the duration of infection. However, gross pathology results showed that miR-378b-/- mice had significantly reduced uterine dilatations and pathologic lesions after two infections compared to WT mice. In addition, the pregnancy and fertility rates for infected miR-378b-/- mice showed protection from Chlamydia-induced infertility with fertility rate that was comparable to uninfected WT mice. These results are intriguing as they suggest that miR-378b is important in regulating host immune responses that control Chlamydial replication and drive the inflammation that causes complications such as infertility. The finding has important implications for biomarkers of Chlamydial complications and targets for prevention of disease.

7.
Clin Infect Dis ; 72(3): 482-485, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33527126

RESUMO

Among 146 nasopharyngeal (NP) and oropharyngeal (OP) swab pairs collected ≤7 days after illness onset, Real-Time Reverse Transcriptase Polymerase Chain Reaction assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 RT-PCR) diagnostic results were 95.2% concordant. However, NP swab cycle threshold values were lower (indicating more virus) in 66.7% of concordant-positive pairs, suggesting NP swabs may more accurately detect the amount of SARS-CoV-2.


Assuntos
COVID-19 , Técnicas de Laboratório Clínico , Testes Diagnósticos de Rotina , Humanos , Nasofaringe , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Estados Unidos
8.
mSphere ; 6(1)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536322

RESUMO

Smallpox, caused by Variola virus (VARV), was eradicated in 1980; however, VARV bioterrorist threats still exist, necessitating readily available therapeutics. Current preparedness activities recognize the importance of oral antivirals and recommend therapeutics with different mechanisms of action. Monkeypox virus (MPXV) is closely related to VARV, causing a highly similar clinical human disease, and can be used as a surrogate for smallpox antiviral testing. The prairie dog MPXV model has been characterized and used to study the efficacy of antipoxvirus therapeutics, including recently approved TPOXX (tecovirimat). Brincidofovir (BCV; CMX001) has shown antiviral activity against double-stranded DNA viruses, including poxviruses. To determine the exposure of BCV following oral administration to prairie dogs, a pharmacokinetics (PK) study was performed. Analysis of BCV plasma concentrations indicated variability, conceivably due to the outbred nature of the animals. To determine BCV efficacy in the MPXV prairie dog model, groups of animals were intranasally challenged with 9 × 105 plaque-forming units (PFU; 90% lethal dose [LD90]) of MPXV on inoculation day 0 (ID0). Animals were divided into groups based on the first day of BCV treatment relative to inoculation day (ID-1, ID0, or ID1). A trend in efficacy was noted dependent upon treatment initiation (57% on ID-1, 43% on ID0, and 29% on ID1) but was lower than demonstrated in other animal models. Analysis of the PK data indicated that BCV plasma exposure (maximum concentration [Cmax]) and the time of the last quantifiable concentration (AUClast) were lower than in other animal models administered the same doses, indicating that suboptimal BCV exposure may explain the lower protective effect on survival.IMPORTANCE Preparedness activities against highly transmissible viruses with high mortality rates have been highlighted during the ongoing coronavirus disease 2019 (COVID-19) pandemic. Smallpox, caused by variola virus (VARV) infection, is highly transmissible, with an estimated 30% mortality. Through an intensive vaccination campaign, smallpox was declared eradicated in 1980, and routine smallpox vaccination of individuals ceased. Today's current population has little/no immunity against VARV. If smallpox were to reemerge, the worldwide results would be devastating. Recent FDA approval of one smallpox antiviral (tecovirimat) was a successful step in biothreat preparedness; however, orthopoxviruses can become resistant to treatment, suggesting the need for multiple therapeutics. Our paper details the efficacy of the investigational smallpox drug brincidofovir in a monkeypox virus (MPXV) animal model. Since brincidofovir has not been tested in vivo against smallpox, studies with the related virus MPXV are critical in understanding whether it would be protective in the event of a smallpox outbreak.


Assuntos
Citosina/análogos & derivados , Monkeypox virus/efeitos dos fármacos , Organofosfonatos/farmacologia , Organofosfonatos/farmacocinética , Varíola/tratamento farmacológico , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Benzamidas/farmacocinética , Benzamidas/farmacologia , Citosina/farmacocinética , Citosina/farmacologia , Modelos Animais de Doenças , Cães , Feminino , Isoindóis/farmacocinética , Isoindóis/farmacologia , Masculino , Vírus da Varíola/efeitos dos fármacos
9.
JAMA Intern Med ; 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32692365

RESUMO

IMPORTANCE: Reported cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely underestimate the prevalence of infection in affected communities. Large-scale seroprevalence studies provide better estimates of the proportion of the population previously infected. OBJECTIVE: To estimate prevalence of SARS-CoV-2 antibodies in convenience samples from several geographic sites in the US. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study performed serologic testing on a convenience sample of residual sera obtained from persons of all ages. The serum was collected from March 23 through May 12, 2020, for routine clinical testing by 2 commercial laboratory companies. Sites of collection were San Francisco Bay area, California; Connecticut; south Florida; Louisiana; Minneapolis-St Paul-St Cloud metro area, Minnesota; Missouri; New York City metro area, New York; Philadelphia metro area, Pennsylvania; Utah; and western Washington State. EXPOSURES: Infection with SARS-CoV-2. MAIN OUTCOMES AND MEASURES: The presence of antibodies to SARS-CoV-2 spike protein was estimated using an enzyme-linked immunosorbent assay, and estimates were standardized to the site populations by age and sex. Estimates were adjusted for test performance characteristics (96.0% sensitivity and 99.3% specificity). The number of infections in each site was estimated by extrapolating seroprevalence to site populations; estimated infections were compared with the number of reported coronavirus disease 2019 (COVID-19) cases as of last specimen collection date. RESULTS: Serum samples were tested from 16 025 persons, 8853 (55.2%) of whom were women; 1205 (7.5%) were 18 years or younger and 5845 (36.2%) were 65 years or older. Most specimens from each site had no evidence of antibodies to SARS-CoV-2. Adjusted estimates of the proportion of persons seroreactive to the SARS-CoV-2 spike protein antibodies ranged from 1.0% in the San Francisco Bay area (collected April 23-27) to 6.9% of persons in New York City (collected March 23-April 1). The estimated number of infections ranged from 6 to 24 times the number of reported cases; for 7 sites (Connecticut, Florida, Louisiana, Missouri, New York City metro area, Utah, and western Washington State), an estimated greater than 10 times more SARS-CoV-2 infections occurred than the number of reported cases. CONCLUSIONS AND RELEVANCE: During March to early May 2020, most persons in 10 diverse geographic sites in the US had not been infected with SARS-CoV-2 virus. The estimated number of infections, however, was much greater than the number of reported cases in all sites. The findings may reflect the number of persons who had mild or no illness or who did not seek medical care or undergo testing but who still may have contributed to ongoing virus transmission in the population.

10.
Vaccines (Basel) ; 8(3)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698399

RESUMO

The protection provided by smallpox vaccines when used after exposure to Orthopoxviruses is poorly understood. Postexposu re administration of 1st generation smallpox vaccines was effective during eradication. However, historical epidemiological reports and animal studies on postexposure vaccination are difficult to extrapolate to today's populations, and 2nd and 3rd generation vaccines, developed after eradication, have not been widely tested in postexposure vaccination scenarios. In addition to concerns about preparedness for a potential malevolent reintroduction of variola virus, humans are becoming increasingly exposed to naturally occurring zoonotic orthopoxviruses and, following these exposures, disease severity is worse in individuals who never received smallpox vaccination. This study investigated whether postexposure vaccination of prairie dogs with 2nd and 3rd generation smallpox vaccines was protective against monkeypox disease in four exposure scenarios. We infected animals with monkeypox virus at doses of 104 pfu (2× LD50) or 106 pfu (170× LD50) and vaccinated the animals with IMVAMUNE® or ACAM2000® either 1 or 3 days after challenge. Our results indicated that postexposure vaccination protected the animals to some degree from the 2× LD50, but not the 170× LD5 challenge. In the 2× LD50 challenge, we also observed that administration of vaccine at 1 day was more effective than administration at 3 days postexposure for IMVAMUNE®, but ACAM2000® was similarly effective at either postexposure vaccination time-point. The effects of postexposure vaccination and correlations with survival of total and neutralizing antibody responses, protein targets, take formation, weight loss, rash burden, and viral DNA are also presented.

11.
Virology ; 544: 55-63, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32174514

RESUMO

Historic observations suggest that survivors of smallpox maintained lifelong immunity and protection to subsequent infection compared to vaccinated individuals. Although protective immunity by vaccination using a related virus (vaccinia virus (VACV) strains) was the key for smallpox eradication, it does not uniformly provide long term, or lifelong protective immunity (Heiner et al., 1971). To determine differences in humoral immune responses, mice were inoculated with VACV either systemically, using intranasal inoculation (IN), or locally by an intradermal (ID) route. We hypothesized that sub-lethal IN infections may mimic systemic or naturally occurring infection and lead to an immunodominance reaction, in contrast to localized ID immunization. The results demonstrated systemic immunization through an IN route led to enhanced adaptive immunity to VACV-expressed protein targets both in magnitude and in diversity when compared to an ID route using a VACV protein microarray. In addition, cytokine responses, assessed using a Luminex® mouse cytokine multiplex kit, following IN infection was greater than that stemming from ID infection. Overall, the results suggest that the route of immunization (or infection) influences antibody responses. The greater magnitude and diversity of response in systemic infection provides indirect evidence for anecdotal observations made during the smallpox era that survivors maintain lifelong protection. These findings also suggest that systemic or disseminated host immune induction may result in a superior response, that may influence the magnitude of, as well as duration of protective responses.


Assuntos
Imunidade Humoral , Vaccinia virus/imunologia , Vacínia/imunologia , Imunidade Adaptativa , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Injeções Intradérmicas , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Vacínia/virologia
12.
Virus Res ; 275: 197772, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31593747

RESUMO

Numerous animal models of systemic orthopoxvirus disease have been developed to evaluate therapeutics against variola virus (VARV), the causative agent of smallpox. These animal models do not resemble the disease presentation in human smallpox and most used surrogate Orthopoxviruses. A rodent model using VARV has a multitude of advantages, and previous investigations identified the CAST/EiJ mouse as highly susceptible to monkeypox virus infection, making it of interest to determine if these rodents are also susceptible to VARV infection. In this study, we inoculated CAST/EiJ mice with a range of VARV doses (102-106 plaque forming units). Some animals had detectable viable VARV from the oropharynx between days 3 and 12 post inoculation. Despite evidence of disease, the CAST/EiJ mouse does not provide a model for clinical smallpox due to mild signs of morbidity and limited skin lesions. However, in contrast to previous rodent models using VARV challenge (i.e. prairie dogs and SCID mice), a robust immune response was observed in the CAST/EiJ mice (measured by Immunoglobulin G enzyme-linked immunosorbent assay). This is an advantage of this model for the study of VARV and presents a unique potential for the study of the immunomodulatory pathways following VARV infection.


Assuntos
Modelos Animais de Doenças , Camundongos , Varíola/imunologia , Vírus da Varíola/imunologia , Vírus da Varíola/patogenicidade , Animais , Feminino , Humanos , Camundongos SCID , Varíola/fisiopatologia , Varíola/virologia
13.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554682

RESUMO

In 2013, a novel orthopoxvirus was detected in skin lesions of two cattle herders from the Kakheti region of Georgia (country); this virus was named Akhmeta virus. Subsequent investigation of these cases revealed that small mammals in the area had serological evidence of orthopoxvirus infections, suggesting their involvement in the maintenance of these viruses in nature. In October 2015, we began a longitudinal study assessing the natural history of orthopoxviruses in Georgia. As part of this effort, we trapped small mammals near Akhmeta (n = 176) and Gudauri (n = 110). Here, we describe the isolation and molecular characterization of Akhmeta virus from lesion material and pooled heart and lung samples collected from five wood mice (Apodemus uralensis and Apodemus flavicollis) in these two locations. The genomes of Akhmeta virus obtained from rodents group into 2 clades: one clade represented by viruses isolated from A. uralensis samples, and one clade represented by viruses isolated from A. flavicollis samples. These genomes also display several presumptive recombination events for which gene truncation and identity have been examined.IMPORTANCE Akhmeta virus is a unique Orthopoxvirus that was described in 2013 from the country of Georgia. This paper presents the first isolation of this virus from small mammal (Rodentia; Apodemus spp.) samples and the molecular characterization of those isolates. The identification of the virus in small mammals is an essential component to understanding the natural history of this virus and its transmission to human populations and could guide public health interventions in Georgia. Akhmeta virus genomes harbor evidence suggestive of recombination with a variety of other orthopoxviruses; this has implications for the evolution of orthopoxviruses, their ability to infect mammalian hosts, and their ability to adapt to novel host species.


Assuntos
Murinae/virologia , Orthopoxvirus/classificação , Orthopoxvirus/isolamento & purificação , Filogenia , Infecções por Poxviridae/virologia , Animais , Genes Virais/genética , Genoma Viral , República da Geórgia , Humanos , Estudos Longitudinais , Orthopoxvirus/genética , Infecções por Poxviridae/transmissão , Infecções por Poxviridae/veterinária , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia
14.
J Am Assoc Lab Anim Sci ; 58(4): 485-500, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31142401

RESUMO

Because human patients with monkeypox virus (MPXV) infection report painful symptoms, it is reasonable to assume that animals infected with MPXV experience some degree of pain. Understanding whether and how analgesics affect MPXV disease progression is crucial when planning in vivo challenge experiments. In the current study, we challenged prairie dogs with a low dose (4 ×10³ pfu) of MPXV and treated with meloxicam (NSAID) or buprenorphine (opioid); control animals did not receive analgesia or received analgesia without MPXV challenge. Subsets of animals from each group were serially euthanized during the course of the study. Disease progression and viral kinetics were similar between groups, but MXPVinfected, meloxicam-treated animals showed increasing trends of morbidity and mortality compared with other groups. Differences between no-analgesia MPXV-infected control animals and MPXV-infected animals treated with buprenorphine were minimal. The findings in the current study allow more informed decisions concerning the use of analgesics during experimental MPXV challenge studies, thereby improving animal welfare. In light of these findings, we have modified our pain scale for this animal model to include the use of buprenorphine for pain relief when warranted after MPXV challenge.


Assuntos
Analgesia , Buprenorfina , Meloxicam , Mpox , Manejo da Dor , Dor , Sciuridae , Animais , Feminino , Analgesia/veterinária , Analgésicos Opioides , Anti-Inflamatórios não Esteroides , Buprenorfina/uso terapêutico , Modelos Animais de Doenças , Meloxicam/uso terapêutico , Mpox/complicações , Mpox/veterinária , Monkeypox virus , Dor/etiologia , Dor/prevenção & controle , Dor/veterinária , Manejo da Dor/veterinária
15.
Emerg Infect Dis ; 25(5): 1023-1025, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753125

RESUMO

We note the reemergence of human monkeypox in Sierra Leone following a 44-year absence of reported disease. The persons affected were an 11-month-old boy and, several years later, a 35-year-old man. The reappearance of monkeypox in this country suggests a need for renewed vigilance and awareness of the disease and its manifestations.


Assuntos
Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/epidemiologia , Mpox/diagnóstico , Mpox/epidemiologia , Adulto , Doenças Transmissíveis Emergentes/virologia , Notificação de Doenças , Humanos , Lactente , Masculino , Mpox/virologia , Vigilância em Saúde Pública , Vigilância de Evento Sentinela , Serra Leoa/epidemiologia
16.
Biologicals ; 55: 59-62, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29970288

RESUMO

The NIH potency test for human rabies vaccines has disadvantages for use, especially in developing countries where rabies is endemic and prophylaxis needs ample, rapid, and reliable vaccine supplies. In China, 60-75 million doses of human rabies vaccines are administered each year. Vaccine quality control is of paramount importance, as is the release of potency-validated vaccines. We intended to design an alternative to the NIH in vivo method, and developed a relative potency test using an ELISA. Using Pearson's correlation analysis, we found a close relationship between the rabies vaccine glycoprotein content in vitro and the potency values in vivo. We suggest the relative potency test developed here as a simplified method for human rabies vaccine quality control in China and a possible alternative to the NIH method.


Assuntos
Vacina Antirrábica/química , Vacina Antirrábica/imunologia , Potência de Vacina , Animais , China , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Camundongos , Controle de Qualidade
17.
Viruses ; 10(5)2018 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-29757202

RESUMO

Annotated whole genome sequences of three isolates of the Akhmeta virus (AKMV), a novel species of orthopoxvirus (OPXV), isolated from the Akhmeta and Vani regions of the country Georgia, are presented and discussed. The AKMV genome is similar in genomic content and structure to that of the cowpox virus (CPXV), but a lower sequence identity was found between AKMV and Old World OPXVs than between other known species of Old World OPXVs. Phylogenetic analysis showed that AKMV diverged prior to other Old World OPXV. AKMV isolates formed a monophyletic clade in the OPXV phylogeny, yet the sequence variability between AKMV isolates was higher than between the monkeypox virus strains in the Congo basin and West Africa. An AKMV isolate from Vani contained approximately six kb sequence in the left terminal region that shared a higher similarity with CPXV than with other AKMV isolates, whereas the rest of the genome was most similar to AKMV, suggesting recombination between AKMV and CPXV in a region containing several host range and virulence genes.


Assuntos
Genoma Viral , Orthopoxvirus/classificação , Orthopoxvirus/genética , África Ocidental , Congo , Vírus da Varíola Bovina/genética , DNA Viral/genética , Monkeypox virus/genética , Fenótipo , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Vírus da Varíola/genética , Sequenciamento Completo do Genoma
18.
J Infect Dis ; 216(12): 1505-1512, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29029254

RESUMO

Serologic cross-reactivity, a hallmark of orthopoxvirus (OPXV) infection, makes species-specific diagnosis of infection difficult. In this study, we used a variola virus proteome microarray to characterize and differentiate antibody responses to nonvaccinia OPXV infections from smallpox vaccination. The profile of 2 case patients infected with newly discovered OPXV, Akhmeta virus, exhibited antibody responses of greater intensity and broader recognition of viral proteins and includes the B21/22 family glycoproteins not encoded by vaccinia virus strains used as vaccines. An additional case of Akhmeta virus, or nonvaccinia OPXV infection, was identified through community surveillance of individuals with no or uncertain history of vaccination and no recent infection. The results demonstrate the utility of microarrays for high-resolution mapping of antibody response to determine the nature of OPXV exposure.


Assuntos
Anticorpos Antivirais/sangue , Proteínas Sanguíneas/análise , Imunidade Humoral , Orthopoxvirus/imunologia , Infecções por Poxviridae/imunologia , Proteoma/análise , Soro/química , Adolescente , Adulto , Humanos , Análise Serial de Proteínas , Estudos Retrospectivos , Adulto Jovem
19.
Viruses ; 9(10)2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28972544

RESUMO

During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.


Assuntos
Animais Selvagens/virologia , Monkeypox virus/isolamento & purificação , Mpox/veterinária , Animais , Anticorpos Antivirais/sangue , República Democrática do Congo/epidemiologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/sangue , Mamíferos/virologia , Mpox/epidemiologia , Mpox/transmissão , Mpox/virologia , Monkeypox virus/genética , Monkeypox virus/imunologia , Monkeypox virus/patogenicidade , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/virologia , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Sciuridae/virologia , Musaranhos/virologia
20.
PLoS Negl Trop Dis ; 11(8): e0005809, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28827792

RESUMO

Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.


Assuntos
Monkeypox virus/fisiologia , Mpox/veterinária , Sciuridae/virologia , África Central , África Ocidental , Animais , Anticorpos Antivirais/sangue , DNA Viral/sangue , Humanos , Sciuridae/imunologia , Replicação Viral , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA