Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 80: 37-44, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30784486

RESUMO

Temperature affects every organism on Earth and has been argued to be one of the most critical factors influencing organisms' ecology and evolution. Most organisms are susceptible to landscape temperature ranges that exceed their thermal tolerance. As a result, the distribution of landscape features that mitigate thermal extremes can affect movement and space use of organisms. Using Rio Grande wild turkey (Meleagris gallopavo intermedia) as a model species, we measured black bulb temperature throughout the diurnal period and identified vegetation characteristics at wild turkey locations and random landscape locations. We observed that the thermal landscape was highly heterogeneous with temperature varying up to 52 °C at a given ambient temperature. Vegetation type strongly influenced temperature across space during daily peak heating, with taller vegetation types (woody vegetation >2 m) having mean temperatures up to 8.95 °C cooler than the remainder of the landscape. However, these cooler vegetation types were uncommon, only accounting for 8.2% of the landscape. Despite the rarity of tall woody cover, wild turkey showed strong selection for this vegetation type particularly during peak daily heating with 74.9% of locations within 18 m of tree cover. Not only did wild turkey alter space use across time relative to temperature variation, but they also altered movement. We found that on the hottest days (≥35 °C), wild turkeys decreased movement by three fold during peak heating, while movement on cooler days (<30 °C) was uniform. Collectively, our data provide evidence that space use and movement for large avian species can be influenced by the thermal environment, and that the thermal environment is an important component of habitat for a species.


Assuntos
Regulação da Temperatura Corporal , Temperatura , Perus/fisiologia , Animais , Comportamento Animal , Feminino , Microclima , Movimento , Plantas
2.
J Therm Biol ; 74: 140-148, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29801620

RESUMO

Behavioral adjustments and parental decisions during reproduction can influence the thermal environment at nests, yet our understanding into how environmental factors (i.e., temperature and precipitation) constrain an adult's ability to balance self-maintenance and incubation demands is limited. To expand our understanding of how species respond to environmental factors, we investigated the reproductive ecology of two ground-nesting species (northern bobwhite [Colinus virginianus] and scaled quail [Callipepla squamata]) in a region (i.e., the Southern Great Plains) prone to thermal variability (i.e., extreme hot and cold temperatures). Specifically, our objective was to examine how temperature and precipitation directly influenced behavioral adjustments (i.e., off-bout duration, frequency, and nest attentiveness) and parental decisions (i.e., nest site selection), and indirectly influenced nest fate. Overall, we found that parents chose to nest in sites that were significantly cooler in temperature than randomly selected sites, and parents further altered the thermal environment experienced by embryos through incubation behavior. Daily precipitation and average ambient temperature and/or their interaction best predicted incubation behaviors, yet each species differed in the timing (i.e., morning vs. evening), frequency, and duration of off-bouts. Furthermore, successful nests were associated with cooler nest site temperatures for bobwhite and warmer nest site temperatures for scaled quail. Our finding of relatively stable (35.5 °C) incubation temperature for developing embryos of both species suggests that ground-nesting birds are able to regulate microclimate through behavioral adjustments and parental decisions even under extreme temperature fluctuations. Nevertheless, the ability for a ground-nesting species to effectively modify behavioral adjustments and decisions may be altered during long periods of enhanced physiological and environmental stress.


Assuntos
Comportamento Animal , Comportamento de Nidação , Codorniz/fisiologia , Temperatura , Animais , Microclima , Chuva , Reprodução
3.
Ecol Appl ; 27(7): 2234-2244, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28736847

RESUMO

Disturbance is critical for the conservation of rangeland ecosystems worldwide and many of these systems are fire dependent. Although it is well established that restoring fire as an ecological process can lead to increased biodiversity in grasslands and shrublands, the underlying mechanisms driving community patterns are poorly understood for fauna in fire-prone landscapes. Much of this uncertainty stems from the paucity of studies that examine the effects of fire at scales relevant to organism life histories. We assessed the response of a non-migratory ground-dwelling bird to disturbance (i.e., prescribed fire) and environmental stochasticity over the course of a 4-yr period, which spanned years of historic drought and record rainfall. Specifically, we investigated the nesting ecology of Northern Bobwhite (Colinus virginianus; hereafter Bobwhite) to illuminate possible avenues by which individuals respond to dynamic landscape patterns during a critical reproductive stage (i.e., nesting) in a mixed-grass shrubland in western Oklahoma, USA. We found that Bobwhites exhibited extreme plasticity in nest substrate use among time since fire categories (TSF) and subsequently maintained high nest survival (e.g., 57-70%). Bobwhites were opportunistic in nest substrate use among TSF categories (i.e., 72% of nest sites in shrubs in 0-12 months post fire compared to 71% in herbaceous vegetation in >36 months post fire), yet nesting decisions were first filtered by similar structural components (i.e., vertical and horizontal cover) within the vicinity of nest sites regardless of TSF category. Despite being a non-migratory and comparatively less mobile ground-nesting bird species, Bobwhites adjusted to dynamic vegetation mosaics on a fire-prone landscape under stochastic climatic conditions that culminated in stable and high nest survival. Broadly, our findings provide a unique depiction of organism response strategies to fire at scales relevant to a critical life-stage, a topic that has been previously understudied and poorly understood. We also demonstrate how doing so can better inform conservation practices aimed at restoring fire regimes on grassland and shrubland landscapes.


Assuntos
Colinus/fisiologia , Ecossistema , Incêndios , Comportamento de Nidação , Reprodução , Animais , Feminino , Longevidade , Oklahoma
4.
Ecol Appl ; 27(6): 1805-1814, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28464361

RESUMO

Fire is a disturbance process that maintains the structure and function of grassland ecosystems while sustaining grassland biodiversity. Conversion of grasslands to other land uses coupled with altered disturbance regimes has greatly diminished the habitat available to many grassland-dependent species. These changes have been linked to declines in breeding bird populations, but may also be critical for migrating bird populations such as those shorebird species that depend on mesic grasslands during migration. We examined migratory shorebird use of burned grasslands in the southern Great Plains of North America using DISTANCE sampling to estimate and compare bird densities across recently burned and not recently burned landscapes (1-5 yr post fire). We conducted two surveys per week for 8-10 weeks along a 54-km route starting at the end of March and concluding in mid-May during 2014-2015. We encountered 2,509 total shorebirds in recently burned areas compared to 130 individuals in areas that were unburned. Fire was a major attractant for our three focal species with American Golden-plover (Pluvialis dominica), Upland Sandpiper (Bartramia longicauda), and Killdeer (Charadrius vociferus) densities of 20.48, 11.09, and 26.09 birds/km2 in burned areas compared with 0.00, 1.27, and 0.92 birds/km2 in unburned areas, respectively. This research illustrates the importance of burned grassland for migrating shorebirds, a phenomenon that has largely gone unreported previously. Generally, these findings add to a body of knowledge that demonstrates the value of managing grasslands with historic disturbances that vary over space and time. The application of these findings should improve decision-making for shorebird conservation and provides evidence that prescribed fire planning should include consideration for breeding, transient, and non-breeding populations that vary in their temporal use of the landscape.


Assuntos
Biodiversidade , Charadriiformes , Conservação dos Recursos Naturais , Pradaria , Migração Animal , Animais , Incêndios , Oklahoma
5.
PLoS One ; 10(11): e0143676, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618845

RESUMO

The habitat selection choices that individuals make in response to thermal environments influence both survival and reproduction. Importantly, the way that organisms behaviorally respond to thermal environments depends on the availability and juxtaposition of sites affording tolerable or preferred microclimates. Although, ground nesting birds are especially susceptible to heat extremes across many reproductive stages (i.e., breeding, nesting, brood rearing), the mechanistic drivers of nest site selection for these species are not well established from a thermal perspective. Our goal was to assess nest site selection relative to the configuration of the thermal landscape by quantifying thermal environments available to a ground-nesting bird species inhabiting a climatically stressful environment. Using northern bobwhite (Colinus virginanus) as a model species, we measured black bulb temperature (Tbb) and vegetation parameters at 87 nests, 87 paired sites and 205 random landscape sites in Western Oklahoma during spring and summer 2013 and 2014. We found that thermal space within the study area exhibited differences in Tbb of up to 40°C during peak diurnal heating, resulting in a diverse thermal landscape available to ground-nesting birds. Within this thermally heterogeneous landscape, nest sites moderated Tbb by more than 12°C compared to random landscape sites. Furthermore, successful nests remained on average 6°C cooler than unsuccessful nests on days experiencing ambient temperatures ≥ 39°C. Models of future Tbb associated with 2080 climate change projections indicate that nesting bobwhites will face substantially greater Tbb throughout the landscape for longer durations, placing an even greater importance on thermal choices for nest sites in the future. These results highlight the capacity of landscape features to act as moderators of thermal extremes and demonstrate how thermal complexity at organism-specific scales can dictate habitat selection.


Assuntos
Temperatura Corporal , Ecossistema , Galliformes/fisiologia , Comportamento de Nidação , Adaptação Fisiológica , Animais , Resposta ao Choque Térmico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA