Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(19): 5817-5828, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35676561

RESUMO

Nicotine is the principal alkaloid in tobacco and has been the primary subject of scientific investigation for its pharmacological effects contributing to tobacco use, dependence, withdrawal, and physical harm. Related minor alkaloids, accounting for less than 6% of alkaloid content in tobacco leaves, may also mirror some of the same pharmacological effects. To detect such low concentrations of the minor alkaloids, tobacco product methods produced by the Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA) using gas chromatography and flame ionization detection (GC-FID) have been adapted for use with gas chromatography-mass spectrometry (GC-MS). Nicotine and minor alkaloid content in SPECTRUM Nicotine Research Cigarettes (NRC) have previously been determined using GC-FID; however, the minor alkaloids were unable to be detected or quantitated. This study employed UltraPerformance Convergence Chromatography (UPC2) system coupled with tandem mass spectrometry (MS2) to determine the nicotine and minor alkaloid content in NRC tobacco products. CORESTA Recommended Methods (CRMs) were adapted for their sample preparative procedures for optimal extraction followed by detection with UPC2-MS2. These results were compared to two separate CRMs that used GC-FID and GC-MS2 as well as an alternative method with GC-MS2 detection. The GC-FID and GC-MS2 CRM preparations along with the alternative GC-MS2 were unable to detect the analytes in every NRC formulation, whereas the UPC2-MS2 extraction and detection method was able to quantify every analyte in every NRC formulation. This increased sensitivity demonstrates the utility of the UPC2-MS2 analytical method in accurately detecting and quantifying nicotine and minor alkaloids in tobacco filler.


Assuntos
Alcaloides , Produtos do Tabaco , Alcaloides/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nicotina/análise , Nicotiana/química , Produtos do Tabaco/análise
2.
J Anal Toxicol ; 46(7): 750-756, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34666345

RESUMO

Studies have suggested that vitamin E acetate (VEA), when used in an electronic vaping device, undergoes thermal degradation and is considered one of the main contributors in e-cigarette or vaping product use-associated lung injury (EVALI). Using a Borgwaldt 5.1 linear smoker, a SVS250 Electronic Vaporizer and two types of tank systems, VEA was analyzed for degradation products produced via the Cooperation Centre for Scientific Research Relative to Tobacco method 81 when the filter containing vaporized VEA was extracted using acetonitrile. Two of the major products identified were 2,3,5,6-tetramethyl-1,4-benzoquinone and 2,6,10,14-tetramethyl-1-pentadecene, which were confirmed using analytical standards and gas chromatography-high-resolution mass spectrometry (GC-HRMS). Additional synthesis of 4-acetoxy-2,3,5,6-tetramethyl-2,4-cyclohexadienone and subsequent characterization using nuclear magnetic resonance and GC-HRMS suggested that this is not one of the products produced. Identification of these degradants will allow future studies to quantify and examine the degradants in vivo and in vitro as biomarkers for exposure and toxicity assessment.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Acetatos , Dronabinol , Vaping/efeitos adversos , Vitamina E/análise , Vitamina E/química , Vitamina E/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA